Article

Cytokine-associated drug toxicity in human hepatocytes is associated with signaling network dysregulation

Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Molecular BioSystems (Impact Factor: 3.18). 04/2010; 6(7):1195-206. DOI: 10.1039/b926287c
Source: PubMed

ABSTRACT Idiosyncratic drug hepatotoxicity is a major problem in pharmaceutical development due to poor prediction capability of standard preclinical toxicity assessments and limited knowledge of its underlying mechanisms. Findings in animal models have shown that adverse effects of numerous drugs with idiosyncratic hepatotoxicity in humans can be reproduced in the presence of coincident inflammatory cytokine signaling. Following these observations, we have recently developed an in vitro drug/inflammatory cytokine co-treatment approach that can reproduce clinical drug hepatotoxicity signatures-particularly for idiosyncratic drugs-in cultured primary human hepatocytes. These observations have suggested that drug-induced stresses may interact with cytokine signaling to induce hepatic cytotoxicity, but the hepatocyte signaling mechanisms governing these interactions are poorly understood. Here, we collect high-throughput phosphoprotein signaling and cytotoxicity measurements in cultured hepatocytes, from multiple human donors, treated with combinations of hepatotoxic drugs (e.g. trovafloxacin, clarithromycin) and cytokines (tumor necrosis factor-alpha, interferon-gamma, interleukin-1 alpha, and interleukin-6). We demonstrate, through orthogonal partial least-squares regression (OPLSR) modeling of these signal-response data, that drug/cytokine hepatic cytotoxicity is integratively controlled by four key signaling pathways: Akt, p70 S6 kinase, MEK-ERK, and p38-HSP27. This modeling predicted, and experimental studies confirmed, that the MEK-ERK and p38-HSP27 pathways contribute pro-death signaling influences in drug/cytokine hepatic cytotoxicity synergy. Further, our four-pathway OPLSR model produced successful prediction of drug/cytokine hepatic cytotoxicities across different human donors, even though signaling and cytotoxicity responses were both highly donor-specific. Our findings highlight the critical role of kinase signaling in drug/cytokine hepatic cytotoxicity synergies and reveal that hepatic cytotoxicity responses are governed by multi-pathway signaling network balance.

1 Follower
 · 
136 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Reliable in vitro human disease models that capture the complexity of in vivo tissue behaviors are crucial to gain mechanistic insights into human disease and enable the development of treatments that are effective across broad patient populations. The integration of stem cell technologies, tissue engineering, emerging biomaterials strategies and microfabrication processes, as well as computational and systems biology approaches, is enabling new tools to generate reliable in vitro systems to study the molecular basis of human disease and facilitate drug development. In this review, we discuss these recently developed tools and emphasize opportunities and challenges involved in combining these technologies toward regenerative science.
    Drug discovery today 04/2014; 19(6). DOI:10.1016/j.drudis.2014.04.017 · 5.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hepatotoxicity of the antidiabetic drug metformin has been reported, but the underlying mechanisms remain unclear. We here investigated the effect of metformin in immune-mediated liver damage. While not hepatotoxic alone, metformin (200 mg/kg) aggravated concanavalin A (Con A, 12 mg/kg)-induced hepatitis, an experimental model of T cell-mediated liver injury, in both relatively resistant BALB/c and highly susceptible C57Bl/6 mice. Metformin + Con A-treated mice had elevated serum levels of pro-inflammatory cytokines TNF-α and IFN-γ, accompanied by a massive mononuclear cell infiltration in the liver. This was associated with the higher numbers of CD4(+) T cells producing TNF-α, IFN-γ and IL-17, CD4(+) T cells expressing chemokine receptor CXCR3 and activation marker CD27, CD4(+)CD62L(-)CCR7(-) and CD8(+)CD62L(-)CCR7(-) effector memory cells, IFN-γ producing NK cells, IL-4 and IL-17 producing NKT cells and IL-12 producing macrophages/dendritic cells. The percentage of CD4(+)CXCR3(+)Tbet(+)IL-10(+) and CD4(+)CD69(+)CD25(-) regulatory T cells was reduced. Metformin stimulated inducible nitric oxide synthase (iNOS) expression in the liver and spleen, and genetic deletion of iNOS attenuated the hepatotoxicity of metformin. Metformin increased the autophagic light chain 3 conversion and mRNA expression of important autophagy-inducing (beclin-1, Atg5 and GABARAP) and pro-apoptotic (p21, p27, Puma, Noxa, Bax, Bad, Bak1, Bim and Apaf1), but not anti-apoptotic molecules (Bcl-xL, survivin and XIAP), which correlated with the apoptotic caspase-3/PARP cleavage in the liver. The autophagy inhibitor chloroquine (20 mg/kg) prevented liver injury and apoptotic changes induced by metformin. Therefore, metformin aggravates immune-mediated hepatitis by promoting autophagy and activation of immune cells, affecting effector, as well as liver-specific regulatory T cells and iNOS expression.
    Archives of Toxicology 04/2014; 89(3). DOI:10.1007/s00204-014-1263-1 · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: The quest for a biomarker that would reliably identify patients at risk of developing acute drug-induced liver injury (DILI) to a specific agent or class of agents before it occurs, has been underway for years. Historical host factors for DILI, such as older age and female gender, are not considered sufficient to truly predict an individual's inherent risk of DILI. In vitro and animal-based biomarker discoveries, in many instances, have not been considered accurate enough for drug development in human subjects nor for use in clinical practice. Areas covered: In order to assess the current state of biomarkers to predict idiosyncratic human DILI, the authors utilized the PubMed literature search tool to identify research reports dealing with clinical DILI biomarkers covering the period of 2010 through to June 2012. Studies involving pharmacogenetic, proteomic and toxicogenomic analyses are preferentially reviewed. Expert opinion: Although acute DILI has been linked to specific genetic associations (e.g., flucloxacillin and HLA-B*5701; and certain polymorphisms seen with anti-TB agent DILI), such predictors have been able to identify only some patients at risk for only a limited number of drugs. Proteomic-based biomarkers from stored sera in the US DILI Network, such as apolipoprotein E, have been identified as potential candidates, but require further study. As it currently stands, the quest for a widely applicable, validated DILI biomarker remains an ongoing clinical challenge.
    Expert Opinion on Drug Metabolism &amp Toxicology 11/2012; 8(12). DOI:10.1517/17425255.2012.724060 · 2.93 Impact Factor

Full-text (2 Sources)

Download
43 Downloads
Available from
Jun 3, 2014