Cytokine-associated drug toxicity in human hepatocytes is associated signaling network dysregulation

Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Molecular BioSystems (Impact Factor: 3.21). 04/2010; 6(7):1195-206. DOI: 10.1039/b926287c
Source: PubMed


Idiosyncratic drug hepatotoxicity is a major problem in pharmaceutical development due to poor prediction capability of standard preclinical toxicity assessments and limited knowledge of its underlying mechanisms. Findings in animal models have shown that adverse effects of numerous drugs with idiosyncratic hepatotoxicity in humans can be reproduced in the presence of coincident inflammatory cytokine signaling. Following these observations, we have recently developed an in vitro drug/inflammatory cytokine co-treatment approach that can reproduce clinical drug hepatotoxicity signatures-particularly for idiosyncratic drugs-in cultured primary human hepatocytes. These observations have suggested that drug-induced stresses may interact with cytokine signaling to induce hepatic cytotoxicity, but the hepatocyte signaling mechanisms governing these interactions are poorly understood. Here, we collect high-throughput phosphoprotein signaling and cytotoxicity measurements in cultured hepatocytes, from multiple human donors, treated with combinations of hepatotoxic drugs (e.g. trovafloxacin, clarithromycin) and cytokines (tumor necrosis factor-alpha, interferon-gamma, interleukin-1 alpha, and interleukin-6). We demonstrate, through orthogonal partial least-squares regression (OPLSR) modeling of these signal-response data, that drug/cytokine hepatic cytotoxicity is integratively controlled by four key signaling pathways: Akt, p70 S6 kinase, MEK-ERK, and p38-HSP27. This modeling predicted, and experimental studies confirmed, that the MEK-ERK and p38-HSP27 pathways contribute pro-death signaling influences in drug/cytokine hepatic cytotoxicity synergy. Further, our four-pathway OPLSR model produced successful prediction of drug/cytokine hepatic cytotoxicities across different human donors, even though signaling and cytotoxicity responses were both highly donor-specific. Our findings highlight the critical role of kinase signaling in drug/cytokine hepatic cytotoxicity synergies and reveal that hepatic cytotoxicity responses are governed by multi-pathway signaling network balance.

Download full-text


Available from: Benjamin D Cosgrove, Jan 15, 2014
  • Source
    • "Having in mind the prosurvival action of Akt in hepatocytes (Cosgrove et al. 2010), its activation in liver tissue by metformin is probably only a compensatory mechanism not responsible for the hepatotoxicity of the drug. It is also unlikely that the modulation of MAPK signaling contributed to aggravation of Con A hepatitis, as p38, which mainly promotes T cell activation (Smith-Garvin et al. 2009), induction of iNOS (Rao 2000), autophagy (Sridharan et al. 2011) and hepatocyte death (Cosgrove et al. 2010), was inhibited by metformin, while ERK and JNK were not affected. It should be noted the inhibition of splenocyte AMPK by metformin , observed in the present study, seems at odds with the well-known ability of the drug to activate this intracellular energy sensor in various cell types (Boyle et al. 2010). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatotoxicity of the antidiabetic drug metformin has been reported, but the underlying mechanisms remain unclear. We here investigated the effect of metformin in immune-mediated liver damage. While not hepatotoxic alone, metformin (200 mg/kg) aggravated concanavalin A (Con A, 12 mg/kg)-induced hepatitis, an experimental model of T cell-mediated liver injury, in both relatively resistant BALB/c and highly susceptible C57Bl/6 mice. Metformin + Con A-treated mice had elevated serum levels of pro-inflammatory cytokines TNF-α and IFN-γ, accompanied by a massive mononuclear cell infiltration in the liver. This was associated with the higher numbers of CD4(+) T cells producing TNF-α, IFN-γ and IL-17, CD4(+) T cells expressing chemokine receptor CXCR3 and activation marker CD27, CD4(+)CD62L(-)CCR7(-) and CD8(+)CD62L(-)CCR7(-) effector memory cells, IFN-γ producing NK cells, IL-4 and IL-17 producing NKT cells and IL-12 producing macrophages/dendritic cells. The percentage of CD4(+)CXCR3(+)Tbet(+)IL-10(+) and CD4(+)CD69(+)CD25(-) regulatory T cells was reduced. Metformin stimulated inducible nitric oxide synthase (iNOS) expression in the liver and spleen, and genetic deletion of iNOS attenuated the hepatotoxicity of metformin. Metformin increased the autophagic light chain 3 conversion and mRNA expression of important autophagy-inducing (beclin-1, Atg5 and GABARAP) and pro-apoptotic (p21, p27, Puma, Noxa, Bax, Bad, Bak1, Bim and Apaf1), but not anti-apoptotic molecules (Bcl-xL, survivin and XIAP), which correlated with the apoptotic caspase-3/PARP cleavage in the liver. The autophagy inhibitor chloroquine (20 mg/kg) prevented liver injury and apoptotic changes induced by metformin. Therefore, metformin aggravates immune-mediated hepatitis by promoting autophagy and activation of immune cells, affecting effector, as well as liver-specific regulatory T cells and iNOS expression.
    Archives of Toxicology 04/2014; 89(3). DOI:10.1007/s00204-014-1263-1 · 5.98 Impact Factor
  • Source
    • "Erythromycin and other macrolides exert anti-inflammatory activity by attenuation of both TNFα-IKKβ and ERK1/2 signalling 27,28, thus increasing the inhibitory effect of TSC1/TSC2 towards Rheb. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Acne pathogenesis has recently been linked to decreased nuclear FoxO1 levels and increased mTORC1 activity. This hypothesis postulates that antiacne agents either enhance nuclear FoxO activity or inhibit mTORC1. Benzoyl peroxide (BPO), by activation of oxidative stress-inducible kinases, increases nuclear FoxO levels promoting Sestrin3-mediated AMPK activation. Furthermore, BPO-derived ROS may activate AMPK via ataxia-telangiectasia mutated. Isotretinoin and all-trans retinoic acid may stimulate FoxO gene expression. Doxycycline may enhance FoxOs nuclear retention by inhibiting the expression of exportin 1. Suppression of TNFα signalling by tetracyclines, erythromycin and other macrolides may attenuate IKKβ-TSC1-mediated mTORC1 activation. Erythromycin attenuates ERK1/2 activity and thereby increases TSC2. Azelaic acid may decrease mTORC1 by inhibiting mitochondrial respiration, increasing cellular ROS and nuclear FoxO levels. Antiandrogens may attenuate mTORC1 by suppressing mTORC2-mediated Akt/TSC2 signalling. This hypothesis unmasks a common mode of action of antiacne agents as either FoxO enhancers or mTORC1 inhibitors and thus provides a rational approach for the development of new antiacne agents.
    Experimental Dermatology 07/2013; 22(7):502-504. DOI:10.1111/exd.12172 · 3.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reagents that facilitate solubilization of cells and tissues while preserving the biological activity of their constituents play a major role in various applications including drug delivery. Such reagents are necessary for the accurate determination of cellular and tissue concentrations of proteins, peptides, and nucleic acids, and to measure therapeutic efficacy of drug delivery technologies. Surfactant-based reagents are commonly used for this purpose; however, their utility is marred either by limited ability to solubilize or tendency to denature the proteins during solubilization. Here, we report on the screening and identification of combinations of nonionic and zwitterionic surfactants that possess excellent ability to solubilize mechanically strong and elastic tissues such as skin, while preserving its protein constituents. The leading combination, comprising an equi-mass mixture of 3-(N,N-dimethyl myristyl ammonio) propanesulfonate (TPS, CAS number:14933-09-6) and polyoxyethylene(10) cetyl ether (Brij® C10, CAS number: 9004-95-9) with a total surfactant concentration 0.5 % w/v, solubilized keratinocytes and preserved the activity of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) enzyme in its extracts at room temperature for 7 days. The ability of this mixture to preserve GAPDH activity far exceeded that of a commonly used reagent, Triton-X100. The same mixture also helped solubilize mouse skin to extract proteins and maintain detectable activity of GAPDH in the extract for 1 day. Several other mixtures of nonionic and zwitterionic surfactants were studied. These mixtures provide new reagents for solubilization of cells and tissues for research as well as technological applications.
    Drug Delivery and Translational Research 10/2013; 3(5). DOI:10.1007/s13346-013-0128-0
Show more