Preservation of GABA(A) Receptor Function by PTEN Inhibition Protects Against Neuronal Death in Ischemic Stroke

Division of Fundamental Neurobiology, Toronto Western Research Institute, University Health Network, Toronto, Canada.
Stroke (Impact Factor: 6.02). 04/2010; 41(5):1018-26. DOI: 10.1161/STROKEAHA.110.579011
Source: PubMed

ABSTRACT Downregulation of the tumor suppressor, phosphatase and tensin homolog deleted on chromosome 10 (PTEN), is thought to be a novel neuroprotective strategy in ischemic stroke, but the underlying mechanisms remain unclear. In this study, we aimed to validate the use of PTEN regulation of gamma-aminobutyric acid subtype A receptors (GABA(A)Rs) as a molecular target for the treatment of ischemic stroke. Because suppression of GABA(A)Rs contributes to ischemic neuron death, describing the intracellular signaling that interacts with GABA(A)Rs in ischemic neurons would provide a molecular basis for novel stroke therapies.
We measured surface GABA(A)R expression by immunocytochemical labeling and surface protein biotinylation assay. Knockdown and overexpression approaches were used to test the effects of PTEN on the expression and function of GABA(A)Rs. Neuronal death was detected in both in vitro and in vivo stroke models.
The knockdown and overexpression approaches provided the first evidence that PTEN negatively regulated membrane expression and function of GABA(A)Rs in rat hippocampal neurons. Importantly, we demonstrated that a PTEN inhibitor prevented the reduction of surface GABA(A)Rs in injured hippocampal neurons subjected to oxygen-glucose deprivation, an in vitro insult that mimics ischemic injury, whereas a GABA(A)R antagonist significantly reduced this PTEN inhibitor-induced neuroprotection in both the in vitro and in vivo ischemic stroke models.
Our study provides direct evidence that downregulation of PTEN protects against ischemic neuron death by preserving GABA(A)R function. Targeting this pathway may be an effective strategy for development of selective, potent stroke treatments.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Chemical intervention tools have been beneficial to many investigations elucidating signalling networks and interactions. The present review summarizes the current status of chemical tools to probe phosphoinositide metabolism and signalling. In particular, phosphoinositide-targeting tools are compared with protein-targeting tools with respect to their unique advantages and possible applications.
    Biochemical Society Transactions 10/2014; 42(5):1343-1348. DOI:10.1042/BST20140186 · 3.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: GABA is the canonical inhibitory neurotransmitter in the CNS. This inhibitory action is largely mediated by GABA type A receptors (GABAARs). Among the many factors controlling GABAergic transmission, brain-derived neurotrophic factor (BDNF) appears to play a major role in regulating synaptic inhibition. Recent findings have demonstrated that BDNF can be released as a precursor (proBDNF). Although the role of mature BDNF on GABAergic synaptogenesis and maintenance has been well studied, an important question still unanswered is whether secreted proBDNF might affect GABAergic neurotransmission. Here, we have used 14 d in vitro primary culture of hippocampal neurons and ex vivo preparations from rats to study the function of proBDNF in regulation of GABAAR trafficking and activity. We demonstrate that proBDNF impairs GABAergic transmission by the activation of two distinct pathways: (1) a RhoA-Rock-PTEN pathway that decreases the phosphorylation levels of GABAAR, thus affecting receptor function and triggering endocytosis and degradation of internalized receptors, and (2) a JAK-STAT-ICER pathway leading to the repression of GABAARs synthesis. These effects lead to the diminution of GABAergic synapses and are correlated with a decrease in GABAergic synaptic currents. These results revealed new functions for proBDNF-p75 neurotrophin receptor signaling pathway in the control of the efficacy of GABAergic synaptic activity by regulating the trafficking and synthesis of GABAARs at inhibitory synapses.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 10/2014; 34(40):13516-34. DOI:10.1523/JNEUROSCI.2069-14.2014 · 6.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: γ-Aminobutyric acid type A receptors (GABAARs) are the principal mediators of fast synaptic inhibition in the brain as well as the low persistent extrasynaptic inhibition, both of which are fundamental to proper brain function. Thus unsurprisingly, deficits in GABAARs are implicated in a number of neurological disorders and diseases. The complexity of GABAAR regulation is determined not only by the heterogeneity of these receptors but also by its posttranslational modifications, the foremost, and best characterized of which is phosphorylation. This review will explore the details of this dynamic process, our understanding of which has barely scratched the surface. GABAARs are regulated by a number of kinases and phosphatases, and its phosphorylation plays an important role in governing its trafficking, expression, and interaction partners. Here, we summarize the progress in understanding the role phosphorylation plays in the regulation of GABAARs. This includes how phosphorylation can affect the allosteric modulation of GABAARs, as well as signaling pathways that affect GABAAR phosphorylation. Finally, we discuss the dysregulation of GABAAR phosphorylation and its implication in disease processes. © 2015 Elsevier Inc. All rights reserved.
    Advances in pharmacology (San Diego, Calif.) 01/2015; 72:97-146. DOI:10.1016/bs.apha.2014.11.008