Persistent High Alcohol Consumption in Alcohol-Preferring (P) Rats Results from a Lack of Normal Aversion to Alcohol

Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Box 3412, Durham, NC 27710, USA.
Alcohol and Alcoholism (Impact Factor: 2.89). 03/2010; 45(3):219-22. DOI: 10.1093/alcalc/agq020
Source: PubMed

ABSTRACT In this study, we tested the impact of pretreatment with alcohol on subsequent alcohol drinking in outbred Sprague-Dawley and selectively bred alcohol-preferring (P) rats.
As a pretreatment, male Sprague-Dawley and P rats were given a passive oral administration of either alcohol (1.0 g/kg) or tap water. Then, they were given free choice of drinking alcohol (5% v/v) or water in their home cages, which was measured over 4 weeks.
Without alcohol pretreatment, there was no significant strain difference in alcohol preference; both strains preferred 5% (v/v) alcohol solution. The strain difference was only apparent in the groups given alcohol pretreatment. This arose from the fact that alcohol pretreatment significantly reduced alcohol preference in the Sprague-Dawley rats to a level well below 50%, while it did not alter drinking behavior in P rats. The same effects were seen with total alcohol consumption (g/kg/day). These effects persisted throughout the 4 weeks of the study.
The principal difference between the Sprague-Dawley and P rats was that the P rats did not show the normal aversion to alcohol after forced exposure to alcohol that the Sprague-Dawley rats showed. One of the potential contributors to high alcohol intake and preference in P rats may be lack of sensitivity to aversive effects of alcohol.

Download full-text


Available from: Amir H Rezvani, Oct 13, 2014
16 Reads
  • Source
    • "Addictive drugs share the property of being self-administered by laboratory animals, and acquisition of drug taking behavior depends on several variables including aversive characteristics intrinsic to many addictive drugs (Stolerman, 1992). Indeed, aversive properties of drugs of abuse, such as cannabinoids and alcohol, play a key role in acquisition phases of self-administration in laboratory animals (Quinn et al., 2008; Rezvani et al., 2010). In addition, vulnerability to drug abuse and dependence might also result from diminished responses to harmful consequences of compulsive drug taking (Riley, 2011). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Addiction as a psychiatric disorder involves interaction of inherited predispositions and environmental factors. Similarly to humans, laboratory animals self-administer addictive drugs, whose appetitive properties result from activation and suppression of brain reward and aversive pathways, respectively. The ventral tegmental area (VTA) where dopamine (DA) cells are located is a key component of brain reward circuitry, whereas the rostromedial tegmental nucleus (RMTg) critically regulates aversive behaviors. Reduced responses to either aversive intrinsic components of addictive drugs or to negative consequences of compulsive drug taking might contribute to vulnerability to addiction. In this regard, female Lister Hooded (LH) rats are more vulnerable than male counterparts to cannabinoid self-administration. We, therefore, took advantage of sex differences displayed by LH rats, and studied VTA DA neuronal properties to unveil functional differences. Electrophysiological properties of DA cells were examined performing either single cell extracellular recordings in anesthetized rats or whole-cell patch-clamp recordings in slices. In vivo, DA cell spontaneous activity was similar, though sex differences were observed in RMTg-induced inhibition of DA neurons. In vitro, DA cells showed similar intrinsic and synaptic properties. However, females displayed larger depolarization-induced suppression of inhibition (DSI) than males. DSI, an endocannabinoid-mediated form of short term plasticity, was mediated by 2-arachidonoylglycerol (2-AG) activating type 1-cannabinoid (CB1) receptors. We found that sex-dependent differences in DSI magnitude were not ascribed to CB1 number and/or function, but rather to a tonic 2-AG signalling. We suggest that sex specific tonic 2-AG signaling might contribute to regulate responses to aversive intrinsic properties to cannabinoids, thus resulting in faster acquisition/initiation of cannabinoid taking and, eventually, in progression to addiction
    Frontiers in Integrative Neuroscience 12/2013; 7:93. DOI:10.3389/fnint.2013.00093
  • Source
    • "Since Amp was also found to reduce the ingestion of EtOH without changing its palatability in a taste reactivity test (Kaczmarek and Kiefer, 2000), it is unlikely that altered oral sensory perceptions were involved. Nevertheless, differences in the intake of EtOH may in part also reflect differences in its aversive properties (Rezvani et al., 2010). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies of socially housed rodents have provided significant information regarding the consequences of exposure to stressors. Psychosocial stressors are known to alter the ingestion of ethanol and the activity of the dopaminergic neuronal system. Since both stressors and ethanol are known to affect the function of dopaminergic neurons, we employed amphetamine to assess the role of this neural system on the ingestion of ethanol by psychosocially stressed male rats. Male rats housed two per cage were designated as dominant or subdominant rats based on evaluations of agonistic behavior and body weight changes. The dyad-housed rats and a group of single-housed rats were sequentially assessed for ethanol intake after injections of saline or amphetamine (0.3, 0.9 or 2.7 mg/kg i.p.) both prior to dyad housing and subsequently again during dyad-housing. Prior to dyad housing ethanol intake of future subdominant rats was higher than that of future dominant rats. Dyad-housing significantly increased ethanol intake of dominant rats. Pre-dyad the highest dose of amphetamine potently depressed ethanol ingestion. Sensitivity to amphetamine's depressant effect on ethanol intake was higher at the dyad test in all subjects, most prominently in single-housed rats. In contrast to the single-housed rats, the dyad-housed rats displayed saccharin anhedonia. It can be concluded that dopaminergic system modulates, at least partially, the psychosocial stress-induced changes in ethanol intake. Furthermore, the level of ethanol ingestion at the pre-dyad test was predictive of future hierarchical status.
    Pharmacology Biochemistry and Behavior 01/2012; 101(3):417-26. DOI:10.1016/j.pbb.2012.01.010 · 2.78 Impact Factor
  • Source
    • "Alcohol intake (gram/kilogram) was calculated by multiplying the volume of alcohol consumed in milliliter by 10% and 0.7893 (ethanol density)/body weight in kilogram. Alcohol preference , expressed as percentage, was calculated as follows (volume of alcohol consumed in milliliter/total fluid intake in milliliter) Â 100 (Rezvani et al., 2010). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuropeptide Y (NPY) signaling has been shown to modulate stress responses and to be involved in regulation of alcohol intake and dependence. The present study explores the possibility that blockade of NPY Y2 autoreceptors using a novel, blood-brain barrier penetrant NPY Y2 receptor antagonist, JNJ-31020028 (N-(4-{4-[2-(diethylamino)-2-oxo-1-phenylethyl]piperazin-1-yl}-3-fluorophenyl)-2-pyridin-3-ylbenzamide), may achieve a therapeutically useful activation of the NPY system in alcohol- and anxiety-related behavioral models. We examined JNJ-31020028 in operant alcohol self-administration, stress-induced reinstatement to alcohol seeking, and acute alcohol withdrawal (hangover)-induced anxiety. Furthermore, we tested its effects on voluntary alcohol consumption in a genetic animal model of alcohol preference, the alcohol-preferring (P) rat. Neither systemic (0, 15, 30, and 40 mg/kg, subcutaneously [s.c.]) nor intracerebroventricular (0.0, 0.3, and 1.0 nmol/rat) administration of JNJ-31020028 affected alcohol-reinforced lever pressing or relapse to alcohol seeking behavior following stress exposure. Also, when its effects were tested on unlimited access to alcohol in P rats, preference for alcohol solution was transiently suppressed but without affecting voluntary alcohol intake. JNJ-31020028 (15 mg/kg, s.c.) did reverse the anxiogenic effects of withdrawal from a single bolus dose of alcohol on the elevated plus-maze, confirming the anxiolytic-like properties of NPY Y2 antagonism. Our data do not support Y2 antagonism as a mechanism for reducing alcohol consumption or relapse-like behavior, but the observed effects on withdrawal-induced anxiety suggest that NPY Y2 receptor antagonists may be a putative treatment for the negative affective states following alcohol withdrawal.
    Alcohol (Fayetteville, N.Y.) 12/2010; 45(6):567-76. DOI:10.1016/j.alcohol.2010.09.003 · 2.01 Impact Factor
Show more