Article

Time-of-Day-Dependent Dietary Fat Consumption Influences Multiple Cardiometabolic Syndrome Parameters in Mice

Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA.
International journal of obesity (2005) (Impact Factor: 5.39). 03/2010; 34(11):1589-98. DOI: 10.1038/ijo.2010.63
Source: PubMed

ABSTRACT Excess caloric intake is strongly associated with the development of increased adiposity, glucose intolerance, insulin resistance, dyslipidemia, and hyperleptinemia (that is the cardiometabolic syndrome). Research efforts have focused attention primarily on the quality (that is nutritional content) and/or quantity of ingested calories as potential causes for diet-induced pathology. Despite growing acceptance that biological rhythms profoundly influence energy homeostasis, little is known regarding how the timing of nutrient ingestion influences development of common metabolic diseases.
To test the hypothesis that the time of day at which dietary fat is consumed significantly influences multiple cardiometabolic syndrome parameters.
We report that mice fed either low- or high-fat diets in a contiguous manner during the 12  h awake/active period adjust both food intake and energy expenditure appropriately, such that metabolic parameters are maintained within a normal physiologic range. In contrast, fluctuation in dietary composition during the active period (as occurs in human beings) markedly influences whole body metabolic homeostasis. Mice fed a high-fat meal at the beginning of the active period retain metabolic flexibility in response to dietary challenges later in the active period (as revealed by indirect calorimetry). Conversely, consumption of high-fat meal at the end of the active phase leads to increased weight gain, adiposity, glucose intolerance, hyperinsulinemia, hypertriglyceridemia, and hyperleptinemia (that is cardiometabolic syndrome) in mice. The latter perturbations in energy/metabolic homeostasis are independent of daily total or fat-derived calories.
The time of day at which carbohydrate versus fat is consumed markedly influences multiple cardiometabolic syndrome parameters.

0 Followers
 · 
94 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Because current therapeutics for obesity are limited and only offer modest improvements, novel interventions are needed. Preventing obesity with time-restricted feeding (TRF; 8-9 hr food access in the active phase) is promising, yet its therapeutic applicability against preexisting obesity, diverse dietary conditions, and less stringent eating patterns is unknown. Here we tested TRF in mice under diverse nutritional challenges. We show that TRF attenuated metabolic diseases arising from a variety of obesogenic diets, and that benefits were proportional to the fasting duration. Furthermore, protective effects were maintained even when TRF was temporarily interrupted by ad libitum access to food during weekends, a regimen particularly relevant to human lifestyle. Finally, TRF stabilized and reversed the progression of metabolic diseases in mice with preexisting obesity and type II diabetes. We establish clinically relevant parameters of TRF for preventing and treating obesity and metabolic disorders, including type II diabetes, hepatic steatosis, and hypercholesterolemia. Copyright © 2014 Elsevier Inc. All rights reserved.
    Cell Metabolism 12/2014; 20(6):991-1005. DOI:10.1016/j.cmet.2014.11.001 · 16.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Most aspects of energy metabolism display clear variations during day and night. This daily rhythmicity of metabolic functions, including hormone release, is governed by a circadian system that consists of the master clock in the suprachiasmatic nuclei of the hypothalamus (SCN) and many secondary clocks in the brain and peripheral organs. The SCN control peripheral timing via the autonomic and neuroendocrine system, as well as via behavioural outputs. The sleep-wake cycle, the feeding/fasting rhythm and most hormonal rhythms, including that of leptin, ghrelin and glucocorticoids, usually show an opposite phase (relative to the light-dark cycle) in diurnal and nocturnal species. By contrast, the SCN clock is most active at the same astronomical times in these two categories of mammals. Moreover, in both species, pineal melatonin is secreted only at night. In this review we describe the current knowledge on the regulation of glucose and lipid metabolism by central and peripheral clock mechanisms. Most experimental knowledge comes from studies in nocturnal laboratory rodents. Nevertheless, we will also mention some relevant findings in diurnal mammals, including humans. It will become clear that as a consequence of the tight connections between the circadian clock system and energy metabolism, circadian clock impairments (e.g., mutations or knock-out of clock genes) and circadian clock misalignments (such as during shift work and chronic jet-lag) have an adverse effect on energy metabolism, that may trigger or enhancing obese and diabetic symptoms. Copyright © 2015. Published by Elsevier Ireland Ltd.
    Molecular and Cellular Endocrinology 02/2015; DOI:10.1016/j.mce.2015.01.024 · 4.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Overconsumption of dietary fat contributes to the development of obesity and metabolic syndrome. Recent evidence suggests that high dietary fat may promote these metabolic states not only by providing calories but also by inducing impaired control of energy balance. In normal metabolic states, fat interacts with various organs or receptors to generate signals for the regulation of energy balance. Many of these interactions are impaired by high-fat diets or in obesity, contributing to the development or maintenance of obesity. These impairments may arise largely from fundamental alterations in the hypothalamus where all peripheral signals are integrated to regulate energy balance. This review focuses on various mechanisms by which fat is sensed at different stages of ingestion, circulation, storage, and utilization to regulate food intake, and how these individual mechanisms are altered by high-fat diets or in obesity.
    Reviews in Endocrine and Metabolic Disorders 10/2014; DOI:10.1007/s11154-014-9300-1 · 3.81 Impact Factor

Full-text (2 Sources)

Download
48 Downloads
Available from
May 20, 2014