The molecular pathology of cancer.

SAIC-Frederick, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
Nature Reviews Clinical Oncology (Impact Factor: 15.7). 03/2010; 7(5):251-65. DOI: 10.1038/nrclinonc.2010.41
Source: PubMed

ABSTRACT Rapid technical advances in DNA sequencing and genome-wide association studies are driving the discovery of the germline and somatic mutations that are present in different cancers. Mutations in genes involved in cellular signaling are common, and often shared by tumors that arise in distinct anatomical locations. Here we review the most important molecular changes in different cancers from the perspective of what should be analyzed on a routine basis in the clinic. The paradigms are EGFR mutations in adenocarcinoma of the lung that can be treated with gefitinib, KRAS mutations in colon cancer with respect to treatment with EGFR antibodies, and the use of gene-expression analysis for ER-positive, node-negative breast cancer patients with respect to chemotherapy options. Several other examples in both solid and hematological cancers are also provided. We focus on how disease subtypes can influence therapy and discuss the implications of the impending molecular diagnostic revolution from the point of view of the patients, clinicians, and the diagnostic and pharmaceutical companies. This paradigm shift is occurring first in cancer patient management and is likely to promote the application of these technologies to other diseases.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Development of miniaturized imaging systems with molecular probes enables examination of molecular changes leading to initiation and progression of colorectal cancer in an azoxymethane (AOM)-induced mouse model of the disease. Through improved and novel studies of animal disease models, more effective diagnostic and treatment strategies may be developed for clinical translation. We introduce use of a miniaturized multimodal endoscope with lavage-delivered fluorescent probes to examine dynamic microenvironment changes in an AOM-treated mouse model. The endoscope is equipped with optical coherence tomography (OCT) and laser induced fluorescence (LIF) imaging modalities. It is used with Cy5.5-conjugated antibodies to create time-resolved molecular maps of colon carcinogenesis. We monitored in vivo changes in molecular expression over a five month period for four biomarkers: epithelial growth factor receptor (EGFR), transferrin receptor (TfR), transforming growth factor beta 1 (TGFβ1), and chemokine (C-X-C motif) receptor 2 (CXCR2). In vivo OCT and LIF images were compared over multiple time points to correlate increases in biomarker expression with adenoma development. This system is uniquely capable of tracking in vivo changes in molecular expression over time. Increased expression of the biomarker panel corresponded to sites of disease and offered predictive utility in highlighting sites of disease prior to detectable structural changes. Biomarker expression also tended to increase with higher tumor burden and growth rate in the colon. We can use miniaturized dual modality endoscopes with fluorescent probes to study the tumor microenvironment in developmental animal models of cancer and supplement findings from biopsy and tissue harvesting. Lasers Surg. Med. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.
    Lasers in Surgery and Medicine 01/2015; 47(1). DOI:10.1002/lsm.22309 · 2.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The etiologic heterogeneity of cancer has traditionally been investigated by comparing risk factor frequencies within candidate sub-types, defined for example by histology or by distinct tumor markers of interest. Increasingly tumors are being profiled for molecular features much more extensively. This greatly expands the opportunities for defining distinct sub-types. In this article we describe an exploratory analysis of the etiologic heterogeneity of clear cell kidney cancer. Data are available on the primary known risk factors for kidney cancer, while the tumors are characterized on a genome-wide basis using expression, methylation, copy number and mutational profiles. We use a novel clustering strategy to identify sub-types. This is accomplished independently for the expression, methylation and copy number profiles. The goals are to identify tumor sub-types that are etiologically distinct, to identify the risk factors that define specific sub-types, and to endeavor to characterize the key genes that appear to represent the principal features of the distinct sub-types. The analysis reveals strong evidence that gender represents an important factor that distinguishes disease sub-types. The sub-types defined using expression data and methylation data demonstrate considerable congruence and are also clearly correlated with mutations in important cancer genes. These sub-types are also strongly correlated with survival. The complexity of the data presents many analytical challenges including, prominently, the risk of false discovery. Genomic profiling of tumors offers the opportunity to identify etiologically distinct sub-types, paving the way for a more refined understanding of cancer etiology.
    BMC Medical Research Methodology 12/2014; 14(1):138. DOI:10.1186/1471-2288-14-138 · 2.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Making precision (personalized) medicine a routine clinical reality will require a comprehensive inventory of validated biomarkers and molecular diagnostic tests to stratify disease subtypes and improve accuracy in diagnosis and treatment selection. Realization of this promise has been hindered by the poor productivity of biomarker identification and validation. This situation reflects deficiencies that are pervasive across the entire spectrum of biomarker R&D, from discovery to clinical validation and in the failure of regulatory and reimbursement policies to accommodate new classes of biomarkers. The launch of the National Biomarker Development Alliance is the culmination of a 2-year review and consultation process involving diverse stakeholders to advance standards, best practices and guidelines to enhance biomarker discovery and validation by adoption of systems-based approaches and trans-sector collaboration between academia, clinical medicine and relevant private and public sector stakeholders.
    Expert Review of Molecular Diagnostics 11/2014; 15(2):1-8. DOI:10.1586/14737159.2015.974561 · 4.27 Impact Factor