Article

Iron stores and cerebral veins in MS studied by susceptibility weighted imaging.

Department of Radiology, Wayne State University, Detroit, MI, USA2 Department of Radiology, the First Affiliated Hospital, Dalian Medical University, Dalian, China.
International angiology: a journal of the International Union of Angiology (Impact Factor: 1.01). 04/2010; 29(2):149-57.
Source: PubMed

ABSTRACT In this paper, we seek to determine whether the iron deposition as seen by susceptibility weighted imaging (SWI) in the basal ganglia and thalamus of patients with multiple sclerosis is greater than the iron content measured in normal subjects (individuals unaffected by multiple sclerosis). As increased iron content may result from increased venous pressure, such information would add credence to the concept of Zamboni et al (1) that MS is caused by chronic cerebrospinal venous insufficiency.
Fourteen MS patients were recruited for this study with a mean age of 38 years ranging from 19 to 66 year-old. A velocity compensated 3D gradient echo sequence was used to generate SW images with a high sensitivity to iron content. We evaluated iron in the following structures: substantia nigra, red nucleus, globus pallidus, putamen, caudate nucleus, thalamus and pulvinar thalamus. Each structure was broken into two parts, a high iron content region and a low iron content region. The measured values were compared to previously established baseline iron content in these structures as a function of age.
Twelve of fourteen patients had an increase in iron above normal levels and with a particular pattern of iron deposition in the medial venous drainage system that was associated with the confluence of the veins draining that structure.
Iron may serve as a biomarker of venous vascular damage in multiple sclerosis. The backward iron accumulation pattern seen in the basal ganglia and thalamus of most MS patients is consistent with the hypothesis of venous hypertension.

0 Followers
 · 
149 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although the involvement of immune mechanisms in multiple sclerosis (MS) is undisputed, some argue that there is insufficient evidence to support the hypothesis that MS is an autoimmune disease, and that the difference between immune- and autoimmune disease mechanisms has yet to be clearly delineated. Uncertainties surrounding MS disease pathogenesis and the modest efficacy of currently used disease modifying treatments (DMTs) in the prevention of disability, warrant the need to explore other possibilities. It is evident from the literature that people diagnosed with MS differ widely in symptoms and clinical outcome--some patients have a benign disease course over many years without requiring any DMTs. Attempting to include all patients into a single entity is an oversimplification and may obscure important observations with therapeutic consequences. In this review we advocate an individualised approach named Pathology Supported Genetic Testing (PSGT), in which genetic tests are combined with biochemical measurements in order to identify subgroups of patients requiring different treatments. Iron dysregulation in MS is used as an example of how this approach may benefit patients. The theory that iron deposition in the brain contributes to MS pathogenesis has caused uncertainty among patients as to whether they should avoid iron. However, the fact that a subgroup of people diagnosed with MS show clinical improvement when they are on iron supplementation emphasises the importance of individualised therapy, based on genetic and biochemical determinations.
    Metabolic Brain Disease 03/2012; 27(3):239-53. DOI:10.1007/s11011-012-9290-1 · 2.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Iron, an essential element used for a multitude of biochemical reactions, abnormally accumulates in the CNS of patients with multiple sclerosis (MS). The mechanisms of abnormal iron deposition in MS are not fully understood, nor do we know whether these deposits have adverse consequences, that is, contribute to pathogenesis. With some exceptions, excess levels of iron are represented concomitantly in multiple deep gray matter structures often with bilateral representation, whereas in white matter, pathological iron deposits are usually located at sites of inflammation that are associated with veins. These distinct spatial patterns suggest disparate mechanisms of iron accumulation between these regions. Iron has been postulated to promote disease activity in MS by various means: (i) iron can amplify the activated state of microglia resulting in the increased production of proinflammatory mediators; (ii) excess intracellular iron deposits could promote mitochondria dysfunction; and (iii) improperly managed iron could catalyze the production of damaging reactive oxygen species (ROS). The pathological consequences of abnormal iron deposits may be dependent on the affected brain region and/or accumulation process. Here, we review putative mechanisms of enhanced iron uptake in MS and address the likely roles of iron in the pathogenesis of this disease.
    Journal of Neurochemistry 01/2012; 120(1):7-25. DOI:10.1111/j.1471-4159.2011.07536.x · 4.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increased iron deposition might be implicated in multiple sclerosis (MS). Recent development of MRI enabled to determine brain iron levels in a quantitative manner, which has put more interest on studying the role of iron in MS. Evidence for abnormal iron homeostasis in MS comes also from analyses of iron and iron-related proteins in CSF and blood and postmortem MS brain sections. However, it is not yet clear if iron accumulation is implicated in MS pathology or merely reflects an epiphenomenon. Further interest has been generated by the idea of chronic cerebrospinal venous insufficiency that might be associated with brain iron accumulation due to a reduction in venous outflow, but its existence and etiologic role in MS are currently controversially debated. In future studies, combined approaches applying quantitative MRI together with CSF and serum analyses of iron and iron-related proteins in a clinical followup setting might help to elucidate the implication of iron accumulation in MS.
    02/2011; 2011:606807. DOI:10.1155/2011/606807

Preview (2 Sources)

Download
1 Download
Available from