A 2cM genome-wide scan of European Holstein cattle affected by classical BSE

Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada.
BMC Genetics (Impact Factor: 2.4). 03/2010; 11(1):20. DOI: 10.1186/1471-2156-11-20
Source: PubMed


Classical bovine spongiform encephalopathy (BSE) is an acquired prion disease that is invariably fatal in cattle and has been implicated as a significant human health risk. Polymorphisms that alter the prion protein of sheep or humans have been associated with variations in transmissible spongiform encephalopathy susceptibility or resistance. In contrast, there is no strong evidence that non-synonymous mutations in the bovine prion gene (PRNP) are associated with classical BSE disease susceptibility. However, two bovine PRNP insertion/deletion polymorphisms, one within the promoter region and the other in intron 1, have been associated with susceptibility to classical BSE. These associations do not explain the full extent of BSE susceptibility, and loci outside of PRNP appear to be associated with disease incidence in some cattle populations. To test for associations with BSE susceptibility, we conducted a genome wide scan using a panel of 3,072 single nucleotide polymorphism (SNP) markers on 814 animals representing cases and control Holstein cattle from the United Kingdom BSE epidemic.
Two sets of BSE affected Holstein cattle were analyzed in this study, one set with known family relationships and the second set of paired cases with controls. The family set comprises half-sibling progeny from six sires. The progeny from four of these sires had previously been scanned with microsatellite markers. The results obtained from the current analysis of the family set yielded both some supporting and new results compared with those obtained in the earlier study. The results revealed 27 SNPs representing 18 chromosomes associated with incidence of BSE disease. These results confirm a region previously reported on chromosome 20, and identify additional regions on chromosomes 2, 14, 16, 21 and 28. This study did not identify a significant association near the PRNP in the family sample set. The only association found in the PRNP region was in the case-control sample set and this was not significant after multiple test correction. The genome scan of the case-control animals did not identify any associations that passed a stringent genome-wide significance threshold.
Several regions of the genome are statistically associated with the incidence of classical BSE in European Holstein cattle. Further investigation of loci on chromosomes 2, 14, 16, 20, 21 and 28 will be required to uncover any biological significance underlying these marker associations.

Download full-text


Available from: Brenda M Murdoch, Oct 07, 2015
20 Reads
  • Source
    • "Association mapping relies on detecting correlations between genotypes and the phenotype of interest that are generated by linkage disequilibrium (LD) across a sample of unrelated individuals . Whole genome association (WGA) studies of human TSEs and BSE using extensive single-nucleotide polymorphism (SNP) chips have recently revealed highly localized genomic regions associated with TSE susceptibility (Mead et al. 2009; Murdoch et al. 2010). WGA studies of CWD have not been possible, given the lack of genomic resources for deer. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic wasting disease (CWD) is a fatal transmissible spongiform encephalopathy affecting North American cervids. We assessed the feasibility of association mapping CWD genetic risk factors in wild white-tailed deer () and mule deer () using a panel of bovine microsatellite markers from three homologous deer linkage groups predicted to contain candidate genes. These markers had a low cross-species amplification rate (27.9%) and showed weak linkage disequilibrium (<1 cM). Markers near the prion protein and the neurofibromin 1 () genes were suggestively associated with CWD status in white-tailed deer ( = 0.006) and mule deer ( = 0.02), respectively. This is the first time an association between the region and CWD has been reported.
    Evolutionary Applications 02/2013; 6(2):340-52. DOI:10.1111/eva.12003 · 3.90 Impact Factor
  • Source
    • "This upregulation associated with infection was validated by qRT-PCR at 6, 12, 42 and 45 months PI with a 3.9-, 1.7-, 10.0-and 2.0-fold change respectively. A recent publication by Murdoch et al. (2010) using sib-TDT analysis identified two significant SNPs on BTA 20 associated with BSE incidence within the CART gene. These data suggest that there may be a genetic effect controlling susceptibility to BSE which may be mediated through the expression level of CART, which may also be a signature of the BSE infection. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Bovine spongiform encephalopathy (BSE) is a fatal disorder in cattle characterized by progressive neurodegeneration of the central nervous system. We investigated the molecular mechanisms involved in neurodegeneration during prion infection through the identification of genes that are differentially expressed (DE) between experimentally infected and non-challenged cattle. Gene expression of caudal medulla from control and orally infected animals was compared by microarray analysis using 24,000 bovine oligonucleotides representing 16,846 different genes to identify DE genes associated with BSE disease. In total, 182 DE genes were identified between normal and BSE-infected tissues (>2.0-fold change, P < 0.01); 81 DE genes had gene ontology functions, which included synapse function, calcium ion regulation, immune and inflammatory response, apoptosis, and cytoskeleton organization; 13 of these genes were found to be involved in 26 different Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The expression of five DE genes associated with synapse function (tachykinin, synuclein, neuropeptide Y, cocaine, amphetamine-responsive transcript, and synaptosomal-associated protein 25 kDa) and three DE genes associated with calcium ion regulation (parvalbumin, visinin-like, and cadherin) was further validated in the medulla tissue of cattle at different infection times (6, 12, 42, and 45 months post-infection) by qRT-PCR. These data will contribute to a better understanding of the molecular mechanisms of neuropathology in bovine species.
    Genetics and molecular research: GMR 10/2011; 10(4):3948-62. DOI:10.4238/2011.October.25.5 · 0.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the past decade, there have been many advances in whole-genome sequencing in domestic animals, as well as the development of "next-generation" sequencing technologies and high-throughput genotyping platforms. Consequently, these advances have led to the creation of the high-density SNP array as a state-of-the-art tool for genetics and genomics analyses of domestic animals. The emergence and utilization of SNP arrays will have significant impacts not only on the scale, speed, and expense of SNP genotyping, but also on theoretical and applied studies of quantitative genetics, population genetics and molecular evolution. The most promising applications in agriculture could be genome-wide association studies (GWAS) and genomic selection for the improvement of economically important traits. However, some challenges still face these applications, such as incorporating linkage disequilibrium (LD) information from HapMap projects, data storage, and especially appropriate statistical analyses on the high-dimensional, structured genomics data. More efforts are still needed to make better use of the high-density SNP arrays in both academic studies and industrial applications.
    Asian Australasian Journal of Animal Sciences 07/2010; 23(7). DOI:10.5713/ajas.2010.r.03 · 0.54 Impact Factor
Show more