Article

Plasmon resonant enhancement of carbon monoxide catalysis.

Department of Materials Science, University of Southern California, Los Angeles, California 90089, USA.
Nano Letters (Impact Factor: 13.03). 03/2010; 10(4):1314-8. DOI: 10.1021/nl9041214
Source: PubMed

ABSTRACT Irradiating gold nanoparticles at their plasmon resonance frequency creates immense plasmonic charge and high temperatures, which can be used to drive catalytic reactions. By integrating strongly plasmonic nanoparticles with strongly catalytic metal oxides, significant enhancements in the catalytic activity can be achieved. Here, we study the plasmonically driven catalytic conversion of CO to CO(2) by irradiating Au nanoparticle/Fe(2)O(3) composites. The reaction rate of this composite greatly exceeds that of the Au nanoparticles or Fe(2)O(3) alone, indicating that this reaction is not driven solely by the thermal (plasmonic) heating of the gold nanoparticles but relies intimately on the interaction of these two materials. A comparison of the plasmonically driven catalytic reaction rate with that obtained under uniform heating shows an enhancement of at least 2 orders of magnitude.

0 Bookmarks
 · 
226 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biomimetic nanotechnologies that use peptides to guide the growth and assembly of nanostructures offer new avenues for the creation of functional nanomaterials and manipulation of their physicochemical properties. However, the impacts of peptide sequence and binding motif upon the surface characteristics and physicochemical properties of nanoparticles remain poorly understood. The configurations of the biomolecules are expected to be extremely important for directing the synthesis and achieving desired material functionality, and these binding motifs will vary with the peptide sequence. Here, we have prepared a series of Au nanoparticles capped with a variety of materials-directing peptides with known affinity for metal surfaces. These nanomaterials were characterized by UV-vis and circular dichroism spectroscopies, transmission electron microscopy, and ζ-potential measurement. Then their catalytic activity for 4-nitrophenol reduction was analyzed. The results indicate that substantially different Au-peptide interfaces are generated using different peptide sequences, even when these sequences have similar binding affinity. This is consistent with recent work showing that Au-peptide binding affinity can have varying entropic and enthalpic contributions, with enthalpically- and entropically-driven binders exhibiting quite different ensembles of configurations on the Au surface. The catalytic activity, as reflected by the measured activation energy, did not correlate with the particle size or with the binding affinity of the peptides, suggesting that the reactivity of these materials is governed by the more subtle details of the conformation of the bound peptide and on the nanoparticle surface reconstruction as dictated by the peptide structure. Such variations in both nanoparticle surface reconstruction and peptide configuration could potentially be used to program specific functionality into the peptide-capped nanomaterials.
    Nanoscale 02/2014; · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Physical mechanisms unique to plasmonic materials, which can be exploited for the existing and emerging applications of plasmonics for renewable energy technologies, are reviewed. The hybrid nature of surface plasmon (SP) modes - propagating surface plasmon polaritons (SPPs) and localized surface plasmons (LSPs) - as collective photon-electron oscillations makes them attractive candidates for energy applications. High density of optical states in the vicinity of plasmonic structures enhances light absorption and emission, enables localized heating, and drives near-field heat exchange between hot and cold surfaces. SP modes channel the energy of absorbed photons directly to the free electrons, and the generated hot electrons can be utilized in thermoelectric, photovoltaic and photo-catalytic platforms. Advantages and disadvantages of using plasmonics over conventional technologies for solar energy and waste heat harvesting are discussed, and areas where plasmonics is expected to lead to performance improvements not achievable by other methods are identified.
    Materials Today 10/2013; 16:379-390. · 6.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Noble metal nanoparticles supporting plasmonic resonances behave as efficient nanosources of light, heat and energetic electrons. Owing to these properties, they offer a unique playground to trigger chemical reactions on the nanoscale. In this tutorial review, we discuss how nanoplasmonics can benefit chemistry and review the most recent developments in this new and fast growing field of research.
    Chemical Society Reviews 02/2014; · 24.89 Impact Factor

Full-text

View
15 Downloads
Available from