Beta-amyloid precursor protein mutants respond to gamma-secretase modulators.

German Center for Neurodegenerative Diseases DZNE)and Adolf-Butenandt-Institute, Biochemistry, Ludwig-Maximilians-University, 80336 Munich, Germany.
Journal of Biological Chemistry (Impact Factor: 4.65). 03/2010; 285(23):17798-810. DOI: 10.1074/jbc.M110.103283
Source: PubMed

ABSTRACT Pathogenic generation of the 42-amino acid variant of the amyloid beta-peptide (Abeta) by beta- and gamma-secretase cleavage of the beta-amyloid precursor protein (APP) is believed to be causative for Alzheimer disease (AD). Lowering of Abeta(42) production by gamma-secretase modulators (GSMs) is a hopeful approach toward AD treatment. The mechanism of GSM action is not fully understood. Moreover, whether GSMs target the Abeta domain is controversial. To further our understanding of the mode of action of GSMs and the cleavage mechanism of gamma-secretase, we analyzed mutations located at different positions of the APP transmembrane domain around or within the Abeta domain regarding their response to GSMs. We found that Abeta(42)-increasing familial AD mutations of the gamma-secretase cleavage site domain responded robustly to Abeta(42)-lowering GSMs, especially to the potent compound GSM-1, irrespective of the amount of Abeta(42) produced. We thus expect that familial AD patients carrying mutations at the gamma-secretase cleavage sites of APP should respond to GSM-based therapeutic approaches. Systematic phenylalanine-scanning mutagenesis of this region revealed a high permissiveness to GSM-1 and demonstrated a complex mechanism of GSM action as other Abeta species (Abeta(41), Abeta(39)) could also be lowered besides Abeta(42). Moreover, certain mutations simultaneously increased Abeta(42) and the shorter peptide Abeta(38), arguing that the proposed precursor-product relationship of these Abeta species is not general. Finally, mutations of residues in the proposed GSM-binding site implicated in Abeta(42) generation (Gly-29, Gly-33) and potentially in GSM-binding (Lys-28) were also responsive to GSMs, a finding that may question APP substrate targeting of GSMs.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer’s disease (AD) is characterized pathologically by an abundance of extracellular neuritic plaques composed primarily of the 42-amino acid amyloid β peptide variant (Aβ42). In the majority of familial AD (FAD) cases, e.g., those harboring mutations in presenilin 1 (PS1), there is a relative increase in the levels of Aβ42 compared to the levels of Aβ40. We previously reported the characterization of a series of aminothiazole-bridged aromates termed aryl aminothiazole γ-secretase modulators or AGSMs [Kounnas, M. Z., et al. (2010) Neuron 67, 769–780] and showed their potential for use in the treatment of FAD [Wagner, S. L., et al. (2012) Arch. Neurol. 69, 1255–1258]. Here we describe a series of GSMs with physicochemical properties improved compared to those of AGSMs. Specific heterocycle replacements of the phenyl rings in AGSMs provided potent molecules with improved aqueous solubilities. A number of these soluble γ-secretase modulators (SGSMs) potently lowered Aβ42 levels without inhibiting proteolysis of Notch or causing accumulation of amyloid precursor protein carboxy-terminal fragments, even at concentrations approximately 1000-fold greater than their IC50 values for reducing Aβ42 levels. The effects of one potent SGSM on Aβ peptide production were verified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry, showing enhanced production of a number of carboxy-truncated Aβ species. This SGSM also inhibited Aβ42 peptide production in a highly purified reconstituted γ-secretase in vitro assay system and retained the ability to modulate γ-secretase-mediated proteolysis in a stably transfected cell culture model overexpressing a human PS1 mutation validating the potential for use in FAD.
    Biochemistry 01/2014; 53(4):702–713. · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Amyloid Precursor Protein (APP) is widely expressed type-I transmembrane (TM) glycoprotein present at the neuronal synapse. The proteolytic cleavage by γ-secretase of its C-terminal fragment produces amyloid-β (Aβ) peptides of different lengths, the deposi- tion of which is an early indicator of Alzheimer's disease (AD). At present, there is no consensus on the conformation of the APP-TM domain at the biological membrane. Although structures have been determined by nuclear magnetic resonance (NMR) in deter- gent micelles, their conformation is markedly different. Here we show by using molecular simulations that the APP-TM region systematically prefers a straight α-helical conformation once embedded in a membrane bi- layer. APP-TM is highly flexible however, and its secondary structure is strongly influenced by the surrounding lipid environment, as when enclosed in detergent micelles. This behavior is confirmed when analyzing in silico the atomistic APP-TM population observed by residual dipolar couplings and double electron-electron resonance (DEER) spectroscopy. These structural and dynamic features are critical in the proteolytic pro- cessing of APP by the γ-secretase enzyme, as suggested by a series of G700 mutants. Affecting the hydration and flexibility of APP-TM these mutants show a correlated increase in the production of Aβ38 compared to Aβ40 peptides, which is reminiscent of the effect of γ-secretase modulators inhibitors.
    Journal of Biological Chemistry 01/2014; · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autosomal-dominant Alzheimer's disease (ADAD) is a genetic disorder caused by mutations in Amyloid Precursor Protein (APP) or Presenilin (PSEN) genes. Studying the mechanisms underlying these mutations can provide insight into the pathways that lead to AD pathology. The majority of biochemical studies on APP mutations to-date have focused on comparing mechanisms between mutations at different codons. It has been assumed that amino acid position is a major determinant of protein dysfunction and clinical phenotype. However, the differential effect of mutations at the same codon has not been sufficiently addressed. In the present study we compared the effects of the aggressive ADAD-associated APP I716F mutation with I716V and I716T on APP processing in human neuroglioma and CHO-K1 cells. All APP I716 mutations increased the ratio of Aβ42/40 and changed the product line preference of γ-secretase towards Aβ38 production. In addition, the APP I716F mutation impaired the ε-cleavage and the fourth cleavage of γ-secretase and led to abnormal APP β-CTF accumulation at the plasma membrane. Taken together, these data indicate that APP mutations at the same codon can induce diverse abnormalities in APP processing, some resembling PSEN1 mutations. These differential effects could explain the clinical differences observed among ADAD patients bearing different APP mutations at the same position. This article is protected by copyright. All rights reserved.
    Journal of Neurochemistry 10/2013; · 3.97 Impact Factor