Glutathionylation of adenine nucleotide translocase induced by carbon monoxide prevents mitochondrial membrane permeabilization and apoptosis.

Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.
Journal of Biological Chemistry (Impact Factor: 4.6). 03/2010; 285(22):17077-88. DOI: 10.1074/jbc.M109.065052
Source: PubMed

ABSTRACT The present work demonstrates the ability of CO to prevent apoptosis in a primary culture of astrocytes. For the first time, the antiapoptotic behavior can be clearly attributed to the inhibition of mitochondrial membrane permeabilization (MMP), a key event in the intrinsic apoptotic pathway. In isolated non-synaptic mitochondria, CO partially inhibits (i) loss of potential, (ii) the opening of a nonspecific pore through the inner membrane, (iii) swelling, and (iv) cytochrome c release, which are induced by calcium, diamide, or atractyloside (a ligand of ANT). CO directly modulates ANT function by enhancing ADP/ATP exchange and prevents its pore-forming activity. Additionally, CO induces reactive oxygen species (ROS) generation, and its prevention by beta-carotene decreases CO cytoprotection in intact cells as well as in isolated mitochondria, revealing the key role of ROS. On the other hand, CO induces a slight increase in mitochondrial oxidized glutathione, which is essential for apoptosis modulation by (i) delaying astrocytic apoptosis, (ii) decreasing MMP, and (iii) enhancing ADP/ATP translocation activity of ANT. Moreover, CO and GSSG trigger ANT glutathionylation, a post-translational process regulating protein function in response to redox cellular changes. In conclusion, CO protects astrocytes from apoptosis by preventing MMP, acting on ANT (glutathionylation and inhibition of its pore activity) via a preconditioning-like process mediated by ROS and GSSG.


Available from: Helena L A Vieira, Apr 26, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondria fulfill a number of biological functions which inherently depend on ATP and O2(-•)/H2O2 production. Both ATP and O2(-•)/H2O2 are generated by electron transfer reactions. ATP is the product of oxidative phosphorylation whereas O2(-•) is generated by singlet electron reduction of di-oxygen (O2). O2(-•) is then rapidly dismutated by superoxide dismutase (SOD) producing H2O2. O2(-•)/H2O2 were once viewed as unfortunately by-products of aerobic respiration. This characterization is fitting considering over production of O2(-•)/H2O2 by mitochondria is associated with range of pathological conditions and aging. However, O2(-•)/H2O2 are only dangerous in large quantities. If produced in a controlled fashion and maintained at a low concentration, cells can benefit greatly from the redox properties of O2(-•)/H2O2. Indeed, low rates of O2(-•)/H2O2 production are required for intrinsic mitochondrial signaling (e.g. modulation of mitochondrial processes) and communication with the rest of the cell. O2(-•)/H2O2 levels are kept in check by anti-oxidant defense systems that sequester O2(-•)/H2O2 with extreme efficiency. Given the importance of O2(-•)/H2O2 in cellular function, it is imperative to consider how mitochondria produce O2(-•)/H2O2 and how O2(-•)/H2O2 genesis is regulated in conjunction with fluctuations in nutritional and redox states. Here, I discuss the fundamentals of electron transfer reactions in mitochondria and emerging knowledge on the 11 potential sources of mitochondrial O2(-•)/H2O2 in tandem with their significance in contributing to overall O2(-•)/H2O2 emission in health and disease. The potential for classifying these different sites in isopotential groups, which is essentially defined by the redox properties of electron donator involved in O2(-•)/H2O2 production, as originally suggested by Brand and colleagues is also surveyed in detail. In addition, redox signaling mechanisms that control O2(-•)/H2O2 genesis from these sites are discussed. Finally, the current methodologies utilized for measuring O2(-•)/H2O2 in isolated mitochondria, cell culture and in vivo are reviewed. Copyright © 2015 The Author. Published by Elsevier B.V. All rights reserved.
    02/2015; 141. DOI:10.1016/j.redox.2015.02.001
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inflammatory bowel disease (IBD), encompassing ulcerative colitis and Crohn's disease, are chronic, relapsing and remitting inflammatory disorders of the intestinal tract. Because the precise pathogenesis of IBD remains unclear, it is important to investigate the pathogenesis of IBD and to evaluate new anti-inflammatory strategies. Recent accumulating evidence has suggested that carbon monoxide (CO) may act as an endogenous defensive gaseous molecule to reduce inflammation and tissue injury in various organ injury models, including intestinal inflammation. Furthermore, exogenous CO administration at low concentrations is protective against intestinal inflammation. These data suggest that CO may be a novel therapeutic molecule in patients with IBD. In this review, we present what is currently known regarding the therapeutic potential of CO in intestinal inflammation. © 2015 S. Karger AG, Basel.
    Digestion 01/2015; 91(1):13-8. DOI:10.1159/000368765 · 2.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Carbon monoxide (CO) is an endogenously produced gasotransmitter, which is associated with cytoprotection and cellular homeostasis in several distinct cell types and tissues. CO mainly targets mitochondria because: (i) mitochondrial heme-proteins are the main potential candidates for CO to bind, (ii) many CO's biological actions are dependent on mitochondrial ROS signaling and (iii) heme is generated in the mitochondrial compartment. Mitochondria are the key cell energy factory, producing ATP through oxidative phosphorylation and regulating cell metabolism. These organelles are also implicated in many cell signaling pathways and the production of reactive oxygen species (ROS). Finally, mitochondria contain several factors activating programmed cell death pathways, which are released from the mitochondrial inter-membrane space upon mitochondrial membrane permeabilization. Therefore, disclosing CO mode of action at mitochondria opens avenues for deeper understanding CO's biological properties. Herein, it is discussed how CO affects the three main aspects of mitochondrial modulation of cell function: metabolism, redox response and cell death.
    Frontiers in Physiology 02/2015; 6. DOI:10.3389/fphys.2015.00033