Article

Regulation of chromatin architecture by the PWWP domain-containing DNA damage-responsive factor EXPAND1/MUM1.

Department of Anatomy, The University of Hong Kong, L1, Laboratory Block, 21 Sassoon Road, Hong Kong SAR.
Molecular cell (Impact Factor: 14.46). 03/2010; 37(6):854-64. DOI: 10.1016/j.molcel.2009.12.040
Source: PubMed

ABSTRACT Dynamic changes of chromatin structure facilitate diverse biological events, including DNA replication, repair, recombination, and gene transcription. Recent evidence revealed that DNA damage elicits alterations to the chromatin to facilitate proper checkpoint activation and DNA repair. Here we report the identification of the PWWP domain-containing protein EXPAND1/MUM1 as an architectural component of the chromatin, which in response to DNA damage serves as an accessory factor to promote cell survival. Depletion of EXPAND1/MUM1 or inactivation of its PWWP domain resulted in chromatin compaction. Upon DNA damage, EXPAND1/MUM1 rapidly concentrates at the vicinity of DNA damage sites via its direct interaction with 53BP1. Ablation of this interaction impaired damage-induced chromatin decondensation, which is accompanied by sustained DNA damage and hypersensitivity to genotoxic stress. Collectively, our study uncovers a chromatin-bound factor that serves an accessory role in coupling damage signaling with chromatin changes in response to DNA damage.

0 Bookmarks
 · 
148 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PWWP domain-containing proteins are often involved in chromatin-associated biological processes, such as transcriptional regulation and DNA repair, and recent studies have shown that the PWWP domain specifies chromatin localization. Mutations in the PWWP domain, a 100–150 amino acid motif, have been linked to various human diseases, emphasizing its importance. Structural studies reveal that PWWP domains possess a conserved aromatic cage for histone methyl-lysine recognition, and synergistically bind both histone and DNA, which contributes to their nucleosome-binding ability and chromatin localization. Furthermore, the PWWP domain often cooperates with other histone and DNA ‘reader’ or ‘modifier’ domains to evoke crosstalk between various epigenetic marks. Here, we discuss these recent advances in understanding the structure and function of the PWWP domain.
    Trends in Biochemical Sciences 09/2014; · 13.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In eukaryotic cells, DNA damage repair occurs on a template DNA that is organized with histones to form nucleosomes and chromatin structures. As such, chromatin plays an important role in DNA damage repair. In this review, we will use "chromatin damage repair" as a framework and highlight recent progress in understanding the role of chromatin, chromatin modifiers, chromatin binding effectors (e.g., the PWWP domain proteins), and the p53 tumor suppressor. We view chromatin as an active participant during DNA damage repair.
    Cell & developmental biology. 05/2013; 2:112.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A fundamental problem in fungal pathogenesis is to elucidate the evolutionary forces responsible for genomic rearrangements leading to races with fitter genotypes. Understanding the adaptive evolutionary mechanisms requires identification of genomic components and environmental factors reshaping the genome of fungal pathogens to adapt. Herein, Magnaporthe oryzae, a model fungal plant pathogen is used to demonstrate the impact of environmental cues on transposable elements (TE) based genome dynamics. For heat shock and copper stress exposed samples, eight TEs belonging to class I and II family were employed to obtain DNA profiles. Stress induced mutant bands showed a positive correlation with dose/duration of stress and provided evidences of TEs role in stress adaptiveness. Further, we demonstrate that genome dynamics differ for the type/family of TEs upon stress exposition and previous reports of stress induced MAGGY transposition has underestimated the role of TEs in M. oryzae. Here, we identified Pyret, MAGGY, Pot3, MINE, Mg-SINE, Grasshopper and MGLR3 as contributors of high genomic instability in M. oryzae in respective order. Sequencing of mutated bands led to the identification of LTR-retrotransposon sequences within regulatory regions of psuedogenes. DNA transposon Pot3 was identified in the coding regions of chromatin remodelling protein containing tyrosinase copper-binding and PWWP domains. LTR-retrotransposons Pyret and MAGGY are identified as key components responsible for the high genomic instability and perhaps these TEs are utilized by M. oryzae for its acclimatization to adverse environmental conditions. Our results demonstrate how common field stresses change genome dynamics of pathogen and provide perspective to explore the role of TEs in genome adaptability, signalling network and its impact on the virulence of fungal pathogens.
    PLoS ONE 04/2014; 9(4):e94415. · 3.53 Impact Factor

Full-text (2 Sources)

Download
46 Downloads
Available from
May 27, 2014