Article

Insertional translocation detected using FISH confirmation of array-comparative genomic hybridization (aCGH) results.

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
American Journal of Medical Genetics Part A (Impact Factor: 2.3). 03/2010; 152A(5):1111-26. DOI: 10.1002/ajmg.a.33278
Source: PubMed

ABSTRACT Insertional translocations (ITs) are rare events that require at least three breaks in the chromosomes involved and thus qualify as complex chromosomal rearrangements (CCR). In the current study, we identified 40 ITs from approximately 18,000 clinical cases (1:500) using array-comparative genomic hybridization (aCGH) in conjunction with fluorescence in situ hybridization (FISH) confirmation of the aCGH findings, and parental follow-up studies. Both submicroscopic and microscopically visible IT events were detected. They were divided into three major categories: (1) simple intrachromosomal and interchromosomal IT resulting in pure segmental trisomy, (2) complex IT involving more than one abnormality, (3) deletion inherited from a parent with a balanced IT resulting in pure segmental monosomy. Of the cases in which follow-up parental studies were available, over half showed inheritance from an apparently unaffected parent carrying the same unbalanced rearrangement detected in the propositi, thus decreasing the likelihood that these IT events are clinically relevant. Nevertheless, we identified six cases in which small submicroscopic events were detected involving known disease-associated genes/genomic segments and are likely to be pathogenic. We recommend that copy number gains detected by clinical aCGH analysis should be confirmed using FISH analysis whenever possible in order to determine the physical location of the duplicated segment. We hypothesize that the increased use of aCGH in the clinic will demonstrate that IT occurs more frequently than previously considered but can identify genomic rearrangements with unclear clinical significance.

0 Bookmarks
 · 
150 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: New human mutations are thought to originate in germ cells, thus making a recurrence of the same mutation in a sibling exceedingly rare. However, increasing sensitivity of genomic technologies has anecdotally revealed mosaicism for mutations in somatic tissues of apparently healthy parents. Such somatically mosaic parents might also have germline mosaicism that can potentially cause unexpected intergenerational recurrences. Here, we show that somatic mosaicism for transmitted mutations among parents of children with simplex genetic disease is more common than currently appreciated. Using the sensitivity of individual-specific breakpoint PCR, we prospectively screened 100 families with children affected by genomic disorders due to rare deletion copy-number variants (CNVs) determined to be de novo by clinical analysis of parental DNA. Surprisingly, we identified four cases of low-level somatic mosaicism for the transmitted CNV in DNA isolated from parental blood. Integrated probabilistic modeling of gametogenesis developed in response to our observations predicts that mutations in parental blood increase recurrence risk substantially more than parental mutations confined to the germline. Moreover, despite the fact that maternally transmitted mutations are the minority of alleles, our model suggests that sexual dimorphisms in gametogenesis result in a greater proportion of somatically mosaic transmitting mothers who are thus at increased risk of recurrence. Therefore, somatic mosaicism together with sexual differences in gametogenesis might explain a considerable fraction of unexpected recurrences of X-linked recessive disease. Overall, our results underscore an important role for somatic mosaicism and mitotic replicative mutational mechanisms in transmission genetics.
    The American Journal of Human Genetics 07/2014; · 10.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Molecular karyotyping is now the first-tier genetic test for patients affected with unexplained intellectual disability (ID) and/or multiple congenital anomalies (MCA), since it identifies a pathogenic copy number variation (CNV) in 10-14% of them. High-resolution microarrays combining molecular karyotyping and single nucleotide polymorphism (SNP) genotyping were recently introduced to the market. In addition to identifying CNVs, these platforms detect loss of heterozygosity (LOH), which can indicate the presence of a homozygous mutation or of uniparental disomy. Since these abnormalities can be associated with ID and/or MCA, their detection is of particular interest for patients whose phenotype remains unexplained. However, the diagnostic yield obtained with these platforms is not confirmed, and the real clinical value of LOH detection has not yet been established.Methods We selected 21 children affected with ID, with or without congenital malformations, for whom standard genetic analyses had failed to provide a diagnosis. We performed high-resolution SNP array analysis with four platforms (Affymetrix Genome-Wide Human SNP Array 6.0, Affymetrix Cytogenetics Whole-Genome 2.7 M array, Illumina HumanOmni1-Quad BeadChip, and Illumina HumanCytoSNP-12 DNA Analysis BeadChip) on whole-blood samples obtained from the children and their parents to detect pathogenic CNVs and LOHs, and compared the results with those obtained on a moderate resolution array-based comparative genomic hybridization platform (NimbleGen CGX-12 Cytogenetics Array), already in use in the clinical setting.ResultsWe identified a total of four pathogenic CNVs in three patients, and all arrays successfully detected them. With the SNP arrays, we also identified a LOH containing a gene associated with a recessive disorder consistent with the patient¿s phenotype (i.e., an informative LOH) in four children (including two siblings). A homozygous mutation within the informative LOH was found in three of these patients. Therefore, we were able to increase the diagnostic yield from 14.3% to 28.6% as a result of the information provided by LOHs.Conclusions This study shows the clinical usefulness of SNP arrays in children with ID, since they successfully detect pathogenic CNVs, but also identify informative LOHs that can lead to the diagnosis of a recessive disorder. It also highlights some of the challenges associated with the use of SNP arrays in a clinical laboratory.
    BMC Medical Genomics 12/2014; 7(1):2. · 3.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is widely accepted that the incidence of chromosomal aberration is 10-15.2% in the azoospermic male; however, the exact genetic damages are currently unknown for more than 40% of azoospermia. To elucidate the causative gene defects, we used the next generation sequencing (NGS) to map the breakpoints of a chromosome insertion from an azoospermic male who carries a balanced, maternally inherited karyotype 46, XY, inv ins (18,7) (q22.1; q36.2q21.11). The analysis revealed that the breakage in chromosome 7 disrupts two genes, dipeptidyl aminopeptidase-like protein 6 (DPP6) and contactin-associated protein-like 2 (CACNA2D1), the former participates in regulation of voltage-gated potassium channels, and the latter is one of the components in voltage-gated calcium channels. The deletion and duplication were not identified equal or beyond 100kb, but 4 homologous DNA elements were verified proximal to the breakpoints. One of the proband's sisters inherited the same aberrant karyotype and experienced recurrent miscarriages and consecutive fetus death, while in contrast, another sister with a normal karyotype experienced normal labor and gave birth to healthy babies. The insertional translocation is confirmed with FISH and the Y-chromosome microdeletions were excluded by genetic testing. This is the first report describing chromosome insertion inv ins (18,7) and attributes DPP6 and CACNA2D1 to azoospermia.
    Gene 06/2014; · 2.20 Impact Factor

Full-text

Download
10 Downloads
Available from
Dec 11, 2014