Transgenic pigs as models for translational biomedical research.

Department of Veterinary Sciences; and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany.
Journal of Molecular Medicine (Impact Factor: 4.77). 03/2010; 88(7):653-64. DOI: 10.1007/s00109-010-0610-9
Source: PubMed

ABSTRACT The translation of novel discoveries from basic research to clinical application is a long, often inefficient, and thus costly process. Accordingly, the process of drug development requires optimization both for economic and for ethical reasons, in order to provide patients with appropriate treatments in a reasonable time frame. Consequently, "Translational Medicine" became a top priority in national and international roadmaps of human health research. Appropriate animal models for the evaluation of efficacy and safety of new drugs or therapeutic concepts are critical for the success of translational research. In this context rodent models are most widely used. At present, transgenic pigs are increasingly being established as large animal models for selected human diseases. The first pig whole genome sequence and many other genomic resources will be available in the near future. Importantly, efficient and precise techniques for the genetic modification of pigs have been established, facilitating the generation of tailored disease models. This article provides an overview of the current techniques for genetic modification of pigs and the transgenic pig models established for neurodegenerative diseases, cardiovascular diseases, cystic fibrosis, and diabetes mellitus.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although noncancerous immortalized cell lines have been developed by introducing genes into human and murine somatic cells, such cell lines have not been available in large domesticated animals like pigs. For immortalizing porcine cells, primary porcine fetal fibroblasts were isolated and cultured using the human telomerase reverse transcriptase (hTERT) gene. After selecting cells with neomycin for 2 weeks, outgrowing colonized cells were picked up and subcultured for expansion. Immortalized cells were cultured for more than 9 months without changing their doubling time (~24 hours) or their diameter (< 20 µm) while control cells became replicatively senescent during the same period. Even a single cell expanded to confluence in 100 mm dishes. Furthermore, to knockout the CMAH gene, designed plasmids encoding a transcription activator-like effector nuclease (TALENs) pairs were transfected into the immortalized cells. Each single colony was analyzed by the mutation-sensitive T7 endonuclease I assay, fluorescent PCR, and dideoxy sequencing to obtain three independent clonal populations of cells that contained biallelic modifications. One CMAH knockout clone was chosen and used for somatic cell nuclear transfer. Cloned embryos developed to the blastocyst stage. In conclusion, we demonstrated that immortalized porcine fibroblasts were successfully established using the human hTERT gene, and the TALENs enabled biallelic gene disruptions in these immortalized cells.
    Molecular therapy. Nucleic acids. 01/2014; 3:e166.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pigs are ideal organ donors for xenotransplantation and an excellent model for studying human diseases, such as neurodegenerative disease. Transcription activator-like effector nucleases (TALENs) are used widely for gene targeting in various model animals. Here, we developed a strategy using TALENs to target the GGTA1, Parkin and DJ-1 genes in the porcine genome using Large White porcine fibroblast cells without any foreign gene integration. In total, 5% (2/40), 2.5% (2/80), and 22% (11/50) of the obtained colonies of fibroblast cells were mutated for GGTA1, Parkin, and DJ-1, respectively. Among these mutant colonies, over 1/3 were bi-allelic knockouts (KO), and no off-target cleavage was detected. We also successfully used single-strand oligodeoxynucleotides to introduce a short sequence into the DJ-1 locus. Mixed DJ-1 mutant colonies were used as donor cells for somatic cell nuclear transfer (SCNT), and three female piglets were obtained (two were bi-allelically mutated, and one was mono-allelically mutated). Western blot analysis showed that the expression of the DJ-1 protein was disrupted in KO piglets. These results imply that a combination of TALENs technology with SCNT can efficiently generate bi-allelic KO pigs without the integration of exogenous DNA. These DJ-1 KO pigs will provide valuable information for studying Parkinson's disease.
    Scientific reports. 01/2014; 4:6926.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The domestic pig is an excellent animal model to study human microbial diseases due to its similarity to humans in terms of anatomy, physiology, and genetics. We assessed the suitability of an in vitro air-liquid interface (ALI) culture system for newborn pig trachea (NPTr) cells as a practical tool for analyzing the immune response of respiratory epithelial cells to aggressors. This cell line offers a wide microbial susceptibility spectrum to both viruses and bacteria. The purpose of our study was to evaluate and characterize diverse aspects of cell differentiation using different culture media. After the NPTr cells reached confluence, the apical medium was removed and the cells were fed by medium from the basal side.
    BMC Cell Biology 05/2014; 15(1):14. · 2.81 Impact Factor