Omega-3 fatty acids reverse age-related decreases in nuclear receptors and increase neurogenesis in old rats

Neuroscience Centre, ICMS, St. Bartholomew's and the Royal London School of Medicine and Dentistry, Queen Mary University of London, Whitechapel, London, United Kingdom.
Journal of Neuroscience Research (Impact Factor: 2.73). 08/2010; 88(10):2091-102. DOI: 10.1002/jnr.22390
Source: PubMed

ABSTRACT Retinoic acid receptors (RARs), retinoid X receptors (RXRs), and peroxisome proliferator-activated receptors (PPARs) are transcription factors involved in many cellular processes, such as learning and memory. RAR and RXR mRNA levels decrease with ageing, and the decreases can be reversed by retinoic acid treatment, which also alleviates age-related memory deficits. The omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have neuroprotective effects in the aged brain and are endogenous ligands of RXR and PPAR. We investigated whether dietary EPA and DHA supplementation reverses age-related declines in protein levels of these receptors in rat forebrain. Two studies were conducted comparing adult and old rats. In the first, old rats were fed standard or EPA/DHA-enriched (270 mg/kg/day, EPA to DHA ratio 1.5:1) diets for 12 weeks. Analysis by Western blot revealed significant decreases in RARalpha, RXRalpha, RXRbeta, and PPARgamma in the forebrain with ageing, which were reversed by supplementation. Immunohistochemical analysis of the hippocampus showed significant age-related decreases in RARalpha and RXRbeta expression in CA1 and the dentate gyrus, which were restored by supplementation. Decreases in hippocampal doublecortin expression were also partially alleviated, suggesting a positive effect on neurogenesis. We also investigated the effects of DHA supplementation (300 mg/kg/day for 12 weeks) on RARalpha, RXRalpha, and RXRbeta expression in the prefrontal cortex, striatum, and hippocampus. Overall, DHA supplementation appeared to increase receptor expression compared with the untreated old group. These observations illustrate additional mechanisms that might underlie the neuroprotective effects of omega-3 fatty acids in ageing.

Download full-text


Available from: Simon C Dyall, Oct 14, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aims To investigate effects of n-3 polyunsaturated fatty acids on cerebral circulation, ovariectomized (OVX) rats were administered phospholipids in krill oil (KPL) or triglycerides in fish oil (FTG); effects on the Ca2 + regulating system in their basilar artery (BA) were then analyzed. Main methods The rats were divided into 4 groups: control, OVX, OVX given KPL (OVXP), and OVX given FTG (OVXT) orally, daily for 2 weeks. Time dependent relaxation (TDR) of contractile response to 5HT in BA was determined myographically, Na+/Ca2 + exchanger (NCX) 1 mRNA expression was determined by real time PCR, and nucleotides were analyzed by HPLC. Key findings The level of TDR in OVX that was significantly lower than in the control, was inhibited by L-NAME and indomethacin; TEA inhibited TDR totally in the control but only partly in OVXP and OVXT. Relaxation induced by the addition of 5 mM of KCl to the BA pre-contracted with 5-HT was inhibited by TEA in the controls, OVXP and OVXT, but not in OVX. Overexpression of NCX1 mRNA in the BA from OVX was significantly inhibited by FTG. The ratio of ADP/ATP in cerebral arteries from OVX was significantly inhibited by KPL and FTG. Levels of triglyceride and arachidonic acid in the plasma of OVX increased, but were significantly inhibited by KPL and FTG. Significance Ovarian dysfunction affects Ca2 + activated-, ATP-sensitive- K+ channels and NCX1, which play crucial roles in the autoregulation of cerebral blood flow. Also, KPL may become as good a supplement as FTG for postmenopausal women.
    Life sciences 03/2014; 100(1). DOI:10.1016/j.lfs.2014.01.070 · 2.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is the most common neurodegenerative disorder in the elderly. In the last years, abnormalities of lipid metabolism and in particular of docosahexaenoic acid (DHA) have been recently linked with the development of the disease. According to the recent studies showing how hydroxylation of fatty acids enhances their biological activity, here we show that chronic treatment with a hydroxylated derivative of DHA, the 2-hydroxy-DHA (2OHDHA) in the 5XFAD transgenic mice model of AD improves performance in the radial arm maze test and restores cell proliferation in the dentate gyrus, with no changes in the presence of beta amyloid (Aβ) plaques. These results suggest that 2OHDHA induced restoration of cell proliferation can be regarded as a major component in memory recovery that is independent of Aβ load thus, setting the starting point for the development of a new drug for the treatment of AD.
    Biogerontology 12/2013; 14:763-775. DOI:10.1007/s10522-013-9461-4 · 3.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The neural system originates from neural stem/progenitor cells (NSPCs). Embryonic NSPCs first proliferate to increase their numbers and then produce neurons and glial cells that compose the complex neural circuits in the brain. New neurons are continually produced even after birth from adult NSPCs in the inner wall of the lateral ventricle and in the hippocampal dentate gyrus. These adult-born neurons are involved in various brain functions, including olfaction-related functions, learning and memory, pattern separation, and mood control. NSPCs are regulated by various intrinsic and extrinsic factors. Diet is one of such important extrinsic factors. Of dietary nutrients, lipids are important because they constitute the cell membrane, are a source of energy, and function as signaling molecules. Metabolites of some lipids can be strong lipid mediators that also regulate various biological activities. Recent findings have revealed that lipids are important regulators of both embryonic and adult NSPCs. We and other groups have shown that lipid signals including fat, fatty acids, their metabolites and intracellular carriers, cholesterol, and vitamins affect proliferation and differentiation of embryonic and adult NSPCs. A better understanding of the NSPCs regulation by lipids may provide important insight into the neural development and brain function.
    Stem cell International 10/2013; 2013:973508. DOI:10.1155/2013/973508 · 2.81 Impact Factor