Article

Polymorphisms of agr locus correspond to distinct genetic patterns of virulence in Staphylococcus aureus clinical isolates from orthopedic implant infections.

Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, Bologna, Italy.
Journal of Biomedical Materials Research Part A (Impact Factor: 2.83). 03/2010; 94(3):825-32. DOI: 10.1002/jbm.a.32764
Source: PubMed

ABSTRACT Staphylococcus aureus is the leading etiologic agent of orthopedic implant infections. It is endowed with the accessory gene regulator (agr) locus that modulates expression of many virulence genes. Four allelic groups of agr have been recognized within this bacterial species. Here, 200 S. aureus isolates from orthopedic implant infections, typed at the start depending on their agr group, were screened for the presence of adhesin and leukotoxin genes. Interestingly, specific virulence gene patterns emerged in association with agr groups. The most frequently observed agr groups, agr I and agr II, were associated with the presence of sdrE, fib (agr II more than agr I), fnbB (agr I more than agr II), and lukE/lukD (agr II more than agr I). The third more frequent agr group, agr III, differed clearly from agr I and II, exhibiting high prevalence of bbp, generally not harbored by agr I and II, and copresence of bbp with cna, whereas high prevalence of the tandem sdrE/fib marked definitely agr II (91% of agr II isolates), and, though less strictly, agr I, in which prevailed the peculiar fib/fnbB pattern. The only four isolates belonging to agr IV showed full copresence of bbp with fib. Results point out distinct patterns of virulence genes, which underlie distinct evolutive strategies associated to agr groups in S. aureus causing orthopedic implant infections.

0 Bookmarks
 · 
82 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: One of the most common pathogens causing musculoskeletal infections remains Staphylococcus aureus. The aim of this multicentre study was to perform a phenotypic and genotypic characterisation of clinical S. aureus isolates recovered from musculoskeletal infections and to investigate differences between isolates cultured from Orthopaedic Implant Related Infections (OIRI) and those from Non-Implant Related Infections (NIRI). OIRI were further differentiated in two groups: Fracture Fixation-Device Infections (FFI) and Prosthetic Joint Infections (PJI). Three-hundred and five S. aureus strains were collected from 4 different Swiss and 2 French hospitals (FFI, n=112; PJI, n=105; NIRI, n=88). NIRI cases were composed of 27 Osteomyelitis (OM), 23 Diabetic Foot Infections (DFI), 27 Soft Tissue Infections (STI) and 11 postoperative Spinal Infections (SI). All isolates were tested for their ability to form biofilm, to produce staphyloxanthin and their haemolytic activity. They were typed by agr (accessory gene regulator) group, spa type and screened by PCR for the presence of genes of the most relevant virulence factors such as MSCRAMMs, Panton Valentine Leukotoxin (PVL), enterotoxins, exotoxins and toxic shock syndrome toxin. Overall, methicillin susceptible S. aureus (MSSA) was more prevalent than methicillin resistant S. aureus (MRSA) in this collection. The OIRI group trended towards a higher incidence of MRSA, gentamicin resistance and haemolysis activity than the NIRI group. Within the OIRI group, PJI isolates were more frequently strong biofilm formers than isolates from the FFI group. A statistically significant difference was observed between OIRI and NIRI isolates for the sdrE gene, the cna gene, the clfA gene and the bbp gene. Certain spa types (t230 and t041) with a specific genetic virulence pattern were only found in isolates cultured from OIRI. In conclusion, our study highlights significant trends regarding the virulence requirements displayed by S. aureus isolates associated with implant related infections in comparison to non-implant related infections. However, future studies including whole genome sequencing will be required to further examine genomic differences among the different infection cases.
    International journal of medical microbiology: IJMM 04/2014; · 4.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Staphylococcus aureus is a leading cause of bloodstream infections (BSI) and diseases that may be caused by hematogenous spread. The staphylococcal adhesin, for which the association with the infections emerging as a complication of septicemia has been well documented, is a bone sialoprotein-binding protein (Bbp). The aim of the study was to assess the prevalence of a bbp gene in S. aureus bloodstream isolates associated with BSI and to investigate to what degree the distribution of this gene is linked to the clonality of the population. Spa typing, used in order to explore the genetic population structure of the isolates, yielded 29 types. Six spa clusters and seven singletons were identified. The most frequent was spa clonal complex CC021 associated with MLST CC30 (38 %). The bbp gene was found in 47 % of isolates. Almost all isolates (95 %) clustered in spa clonal complex CC021 were positive for this gene. All isolates carrying the bbp gene were sensitive to methicillin, and if clustered in the spa CC021, belonged to agr group III. Our study shows that Bbp is not strictly associated with BSI. However, one may conclude that for clonally related S. aureus strains most commonly causing BSI, the risk of Bbp-mediated complications of septicemia is expected to be higher than for other strains.
    Folia Microbiologica 05/2014; · 0.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed at preparation and in vitro and in vivo evaluation of novel bioactive, biodegradable, and antibacterial nanocomposite coating for the improvement of stem cells attachment and antibacterial activity as a candidate for dental implant applications. Poly (lactide-co-glycolide)/bioactive glass/hydroxyapatite (PBGHA) nanocomposite coating was prepared via solvent casting process. The nanoparticle amounts of 10, 15, and 20 weight percent (wt%) were chosen in order to determine the optimum amount of nanoparticles suitable for preparing an uniform coating. Bioactivity and degradation of the coating with an optimum amount of nanoparticles were evaluated by immersing the prepared samples in simulated body fluid and phosphate buffer saline (PBS), respectively. The effect of nanocomposite coating on the attachment and viability of human adipose-derived stem cells (hASCs) was investigated. Kirschner wires (K-wires) of stainless steel were coated with the PBGHA nanocomposite coating, and mechanical stability of the coating was studied during intramedullary implantation into rabbit tibiae. The results showed that using 10 wt% nanoparticles (5 wt% HA and 5 wt% BG) in the nanocomposite could provide the desired uniform coating. The study of in vitro bioactivity showed rapid formation of bone-like apatite on the PBGHA coating. It was degraded considerably after about 60 days of immersion in PBS. The hASCs showed excellent attachment and viability on the coating. PBGHA coating remained stable on the K-wires with a minimum of 96% of the original coating mass. It was concluded that PBGHA nanocomposite coating provides an ideal surface for the stem cells attachment and viability. In addition, it could induce antibacterial activity, simultaneously.
    Journal of Materials Science Materials in Medicine 11/2011; 23(2):485-95. · 2.14 Impact Factor