Ultra-low-power SRAM design in high variability advanced CMOS

Source: OAI

ABSTRACT Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009. Cataloged from PDF version of thesis. Includes bibliographical references (p. 163-181). Embedded SRAMs are a critical component in modern digital systems, and their role is preferentially increasing. As a result, SRAMs strongly impact the overall power, performance, and area, and, in order to manage these severely constrained trade-offs, they must be specially designed for target applications. Highly energy-constrained systems (e.g. implantable biomedical devices, multimedia handsets, etc.) are an important class of applications driving ultra-low-power SRAMs. This thesis analyzes the energy of an SRAM sub-array. Since supply- and threshold-voltage have a strong effect, targets for these are established in order to optimize energy. Despite the heavy emphasis on leakage-energy, analysis of a high-density 256x256 sub-array in 45nm LP CMOS points to two necessary optimizations: (1) aggressive supply-voltage reduction (in addition to Vt elevation), and (2) performance enhancement. Important SRAM metrics, including read/write/hold-margin and read-current, are also investigated to identify trade-offs of these optimizations. Based on the need to lower supply-voltage, a 0.35V 256kb SRAM is demonstrated in 65nm LP CMOS. It uses an 8T bit-cell with peripheral circuit-assists to improve write-margin and bit-line leakage. Additionally, redundancy, to manage the increasing impact of variability in the periphery, is proposed to improve the area-offset trade-off of sense-amplifiers, demonstrating promise for highly advanced technology nodes. Based on the need to improve performance, which is limited by density constraints, a 64kb SRAM, using an offset-compensating sense-amplifier, is demonstrated in 45nm LP CMOS with high-density 0.25[mu]m2 bit-cells. (cont.) The sense-amplifier is regenerative, but non -strobed, overcoming timing uncertainties limiting performance, and it is single-ended, for compatibility with 8T cells. Compared to a conventional strobed sense-amplifier, it achieves 34% improvement in worst-case access-time and 4x improvement in the standard deviation of the access-time. by Naveen Verma. Ph.D.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intelligent biomedical devices implies systems that are able to detect specific physiological processes in patients so that particular responses can be generated. This closed-loop capability can have enormous clinical value when we consider the unprecedented modalities that are beginning to emerge for sensing and stimulating patient physiology. Both delivering therapy (e.g., deep-brain stimulation, vagus nerve stimulation, etc.) and treating impairments (e.g., neural prosthesis) requires computational devices that can make clinically relevant inferences, especially using minimally-intrusive patient signals. The key to such devices is algorithms that are based on data-driven signal modeling as well as hardware structures that are specialized to these. This paper discusses the primary application-domain challenges that must be overcome and analyzes the most promising methods for this that are emerging. We then look at how these methods are being incorporated in ultra-low-energy computational platforms and systems. The case study for this is a seizure-detection SoC that includes instrumentation and computation blocks in support of a system that exploits patient-specific modeling to achieve accurate performance for chronic detection. The SoC samples each EEG channel at a rate of 600 Hz and performs processing to derive signal features on every two second epoch, consuming 9 µJ/epoch/channel. Signal feature extraction reduces the data rate by a factor of over 40×, permitting wireless communication from the patient's head while reducing the total power on the head by 14×.
    J. Low Power Electron. Appl. 12/2011; 1:150-174.


1 Download
Available from