Article

Genetic Structure of Native Circumpolar Populations Based on Autosomal, Mitochondrial, and Y Chromosome DNA Markers

Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, TX 78245-0549, USA.
American Journal of Physical Anthropology (Impact Factor: 2.51). 09/2010; 143(1):62-74. DOI: 10.1002/ajpa.21290
Source: PubMed

ABSTRACT This study investigates the genetic structure of the present-day inhabitants of Beringia in order to answer questions concerning their origins and evolution. According to recent studies, the ancestors of Native Americans paused for a time in Beringia, during which they differentiated genetically from other Asians before peopling the New World. Furthermore, the Koryaks of Kamchatka share a "ubiquitous" allele (D9S1120) with Native Americans, indicating they may have descended from the same ancestral Beringian population that gave rise to the New World founders. Our results show that a genetic barrier exists between Kamchatkans (Koryaks and Even) and Bering Island inhabitants (Aleuts, mixed Aleuts, and Russians), based on Analysis of Molecular Variance (AMOVA) and structure analysis of nine autosomal short tandem repeats (STRs). This is supported by mitochondrial DNA evidence, but not by analysis of Y chromosome markers, as recent non-native male admixture into the region appears to have partially obscured ancient population relationships. Our study indicates that while Aleuts are descended from the original New World founders, the Koryaks are unlikely to represent a Beringian remnant of the ancestral population that gave rise to Native Americans. They are instead, like the Even, more recent arrivals to Kamchatka from interior Siberia, and the "ubiquitous" allele in Koryaks may result from recent gene flow from Chukotka. Genbank accession numbers for mtDNA sequences: GQ922935-GQ922973.

1 Follower
 · 
221 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: All modern Iñupiaq speakers share a common origin, the result of a recent (∼800 YBP) and rapid trans-Arctic migration by the Neo-Eskimo Thule, who replaced the previous Paleo-Eskimo inhabitants of the region. Reduced mitochondrial haplogroup diversity in the eastern Arctic supports the archaeological hypothesis that the migration occurred in an eastward direction. We tested the hypothesis that the Alaskan North Slope served as the origin of the Neo- and Paleo-Eskimo populations further east. We sequenced HVR I and HVR II of the mitochondrial D-loop from 151 individuals in eight Alaska North Slope communities, and compared genetic diversity and phylogenetic relationships between the North Slope Inupiat and other Arctic populations from Siberia, the Aleutian Islands, Canada, and Greenland. Mitochondrial lineages from the North Slope villages had a low frequency (2%) of non-Arctic maternal admixture, and all haplogroups (A2, A2a, A2b, D2a, and D4b1a-formerly known as D3) found in previously sequenced Neo- and Paleo-Eskimos and living Inuit and Eskimo peoples from across the North American Arctic. Lineages basal for each haplogroup were present in the North Slope. We also found the first occurrence of two haplogroups in contemporary North American Arctic populations: D2a, previously identified only in Aleuts and Paleo-Eskimos, and the pan-American C4. Our results yield insight into the maternal population history of the Alaskan North Slope and support the hypothesis that this region served as an ancestral pool for eastward movements to Canada and Greenland, for both the Paleo-Eskimo and Neo-Eskimo populations Am J Phys Anthropol, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
    American Journal of Physical Anthropology 04/2015; DOI:10.1002/ajpa.22750 · 2.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Different data types have previously been shown to have the same microevolutionary patterns in worldwide data sets. However, peopling of the New World studies have shown a difference in migration paths and timings using multiple types of data, spurring research to understand why this is the case. This study was designed to test the degree of similarity in evolutionary patterns by using cranial and dental metric and nonmetric data, along with Y-chromosome DNA and mtDNA. The populations used included Inuits from Alaska, Canada, Siberia, Greenland, and the Aleutian Islands. For comparability, the populations used for the cranial and molecular data were from similar geographic regions or had a shared population history. Distance, R and kinship matrices were generated for use in running Mantel tests, PROTEST analyses, and Procrustes analyses. A clear patterning was seen, with the craniometric data being most highly correlated to the mtDNA data and the cranial nonmetric data being most highly correlated with the Y-chromosome data, while the phenotypic data were also linked. This patterning is suggestive of a possible male or female inheritance, or the correlated data types are affected by the same or similar evolutionary forces. The results of this study indicate cranial traits have some degree of heritability. Moreover, combining data types leads to a richer knowledge of biological affinity. This understanding is important for bioarchaeological contexts, in particular, peopling of the New World studies where focusing on reconciling the results from comparing multiple data types is necessary to move forward. Am J Phys Anthropol, 2014. © 2014 Wiley Periodicals, Inc.
    American Journal of Physical Anthropology 07/2014; 154(3). DOI:10.1002/ajpa.22513 · 2.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The linguistically distinctive Haida and Tlingit tribes of Southeast Alaska are known for their rich material culture, complex social organization, and elaborate ritual practices. However, much less is known about these tribes from a population genetic perspective. For this reason, we analyzed mtDNA and Y-chromosome variation in Haida and Tlingit populations to elucidate several key issues pertaining to the history of this region. These included the genetic relationships of Haida and Tlingit to other indigenous groups in Alaska and Canada; the relationship between linguistic and genetic data for populations assigned to the Na-Dene linguistic family, specifically, the inclusion of Haida with Athapaskan, Eyak, and Tlingit in the language family; the possible influence of matrilineal clan structure on patterns of genetic variation in Haida and Tlingit populations; and the impact of European entry into the region on the genetic diversity of these indigenous communities. Our analysis indicates that, while sharing a "northern" genetic profile, the Haida and the Tlingit are genetically distinctive from each other. In addition, Tlingit groups themselves differ across their geographic range, in part due to interactions of Tlingit tribes with Athapaskan and Eyak groups to the north. The data also reveal a strong influence of maternal clan identity on mtDNA variation in these groups, as well as the significant influence of non-native males on Y-chromosome diversity. These results yield new details about the histories of the Haida and Tlingit tribes in this region.
    American Journal of Physical Anthropology 07/2012; 148(3):422-35. DOI:10.1002/ajpa.22068 · 2.51 Impact Factor