Article

SWI/SNF chromatin remodeling enzyme ATPases promote cell proliferation in normal mammary epithelial cells.

Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
Journal of Cellular Physiology (Impact Factor: 4.22). 03/2010; 223(3):667-78. DOI: 10.1002/jcp.22072
Source: PubMed

ABSTRACT The ATPase subunits of the SWI/SNF chromatin remodeling enzymes, Brahma (BRM) and Brahma-related gene 1 (BRG1), can induce cell cycle arrest in BRM and BRG1 deficient tumor cell lines, and mice heterozygous for Brg1 are pre-disposed to breast tumors, implicating loss of BRG1 as a mechanism for unregulated cell proliferation. To test the hypothesis that loss of BRG1 can contribute to breast cancer, we utilized RNA interference to reduce the amounts of BRM or BRG1 protein in the nonmalignant mammary epithelial cell line, MCF-10A. When grown in reconstituted basement membrane (rBM), these cells develop into acini that resemble the lobes of normal breast tissue. Contrary to expectations, knockdown of either BRM or BRG1 resulted in an inhibition of cell proliferation in monolayer cultures. This inhibition was strikingly enhanced in three-dimensional rBM culture, although some BRM-depleted cells were later able to resume proliferation. Cells did not arrest in any specific stage of the cell cycle; instead, the cell cycle length increased by approximately 50%. Thus, SWI/SNF ATPases promote cell cycle progression in nonmalignant mammary epithelial cells.

0 Bookmarks
 · 
110 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Changes in nuclear morphology occur during normal development and have been observed during the progression of several diseases. The shape of a nucleus is governed by the balance of forces exerted by nuclear-cytoskeletal contacts and internal forces created by the structure of the chromatin and nuclear envelope. However, factors that regulate the balance of these forces and determine nuclear shape are poorly understood. The SWI/SNF chromatin remodeling enzyme ATPase, BRG1, has been shown to contribute to the regulation of overall cell size and shape. Here we document that immortalized mammary epithelial cells show BRG1-dependent nuclear shape changes. Specifically, knockdown of BRG1 induced grooves in the nuclear periphery that could be documented by cytological and ultrastructural methods. To test the hypothesis that the observed changes in nuclear morphology resulted from altered tension exerted by the cytoskeleton, we disrupted the major cytoskeletal networks and quantified the frequency of BRG1-dependent changes in nuclear morphology. The results demonstrated that disruption of cytoskeletal networks did not change the frequency of BRG1-induced nuclear shape changes. These findings suggest that BRG1 mediates control of nuclear shape by internal nuclear mechanisms that likely control chromatin dynamics.
    PLoS ONE 01/2013; 8(2):e55628. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Integrin expression and activity are altered in tumors, and aberrant integrin signaling promotes malignancy. However, how integrins become altered in tumors remains poorly understood. We discovered that oncogenic activation of MEK signaling induces cell growth and survival, and promotes the malignant phenotype of mammary epithelial cells (MECs) by increasing α5 integrin expression. We determined that MEK activates c-Myc to reduce the transcription of the SWI/SNF chromatin remodeling enzyme Brahma (BRM). Our studies revealed that reduced BRM expression and/or activity drives the malignant behavior of MECs by epigenetically promoting C/EBPβ expression to directly induce α5 integrin transcription. Consistently, we could show that restoring BRM levels normalized the malignant behavior of transformed MECs in culture and in vivo by preventing C/EBPβ-dependent α5 integrin transcription. Our findings identify a novel mechanism whereby oncogenic signaling promotes malignant transformation by regulating transcription of a key chromatin remodeling molecule that regulates integrin-dependent stromal-epithelial interactions.Oncogene advance online publication, 17 June 2013; doi:10.1038/onc.2013.220.
    Oncogene 06/2013; · 8.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Malignant pleural mesothelioma (MPM) is an aggressive cancer with short overall survival. Long non-coding RNAs (lncRNA) are a class of RNAs more than 200 nucleotides long that do not code for protein and are part of the 90% of the human genome that is transcribed. Earlier experimental studies in mice showed GAS5 (growth arrest specific transcript 5) gene deletion in asbestos driven mesothelioma. GAS5 encodes for a lncRNA whose function is not well known, but it has been shown to act as glucocorticoid receptor decoy and microRNA “sponge”. Our aim was to investigate the possible role of the GAS5 in the growth of MPM. Methods Primary MPM cultures grown in serum-free condition in 3% oxygen or MPM cell lines grown in serum-containing medium were used to investigate the modulation of GAS5 by growth arrest after inhibition of Hedgehog or PI3K/mTOR signalling. Cell cycle length was determined by EdU incorporation assay in doxycycline inducible short hairpinGAS5 clones generated from ZL55SPT cells. Gene expression was quantified by quantitative PCR. To investigate the GAS5 promoter, a 0.77kb sequence was inserted into a pGL3 reporter vector and luciferase activity was determined after transfection into MPM cells. Localization of GAS5 lncRNA was identified by in situ hybridization. To characterize cells expressing GAS5, expression of podoplanin and Ki-67 was assessed by immunohistochemistry. Results GAS5 expression was lower in MPM cell lines compared to normal mesothelial cells. GAS5 was upregulated upon growth arrest induced by inhibition of Hedgehog and PI3K/mTOR signalling in in vitro MPM models. The increase in GAS5 lncRNA was accompanied by increased promoter activity. Silencing of GAS5 increased the expression of glucocorticoid responsive genes glucocorticoid inducible leucine-zipper and serum/glucocorticoid-regulated kinase-1 and shortened the length of the cell cycle. Drug induced growth arrest was associated with GAS5 accumulation in the nuclei. GAS5 was abundant in tumoral quiescent cells and it was correlated to podoplanin expression. Conclusions The observations that GAS5 levels modify cell proliferation in vitro, and that GAS5 expression in MPM tissue is associated with cell quiescence and podoplanin expression support a role of GAS5 in MPM biology.
    Molecular Cancer 05/2014; 13:119. · 5.13 Impact Factor

Full-text

View
42 Downloads
Available from
Jun 3, 2014