HAP2(GCS1)-Dependent Gamete Fusion Requires a Positively Charged Carboxy-Terminal Domain

Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States of America.
PLoS Genetics (Impact Factor: 8.17). 03/2010; 6(3):e1000882. DOI: 10.1371/journal.pgen.1000882
Source: PubMed

ABSTRACT Author Summary
Recent studies suggest that HAP2(GCS1) is a deeply conserved protein required for gamete membrane fusion, a critical yet poorly understood step in sexual reproduction. HAP2(GCS1) is present in many plant, protist, and animal genomes, and has been shown to be essential for fertilization in Arabidopsis, Chlamydomonas, and Plasmodium. The loss-of-function phenotype in Chlamydomonas suggests a direct role in gamete plasma membrane fusion. HAP2(GCS1) has no known functional domains, making it difficult to predict how it contributes to gamete fusion. We set out to map the critical features of this protein by testing a series of deletions, substitutions, and interspecific chimeras for their ability to rescue the hap2-1 fertilization defect in Arabidopsis. We found that the N-terminus does not tolerate sequence divergence, but the histidine-rich C-terminus does. We propose that the N-terminus of HAP2(GCS1) functions in part by interacting with proteins on the surface of female gametes. The key feature of the C-terminus is positive charge, a characteristic that could favor interactions with the plasma membrane that promote membrane fusion. Our studies provide a description of HAP2(GCS1) functional domains and provide an important framework for defining the role of this essential component of a conserved reproductive mechanism.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Key message New gametic homozygous mutants. In angiosperms, a haploid male gamete (sperm cell) fuses with a haploid female gamete (egg cell) during fertilization to form a zygote carrying paternally and maternally derived chromosomes. Several fertilization-defective mutants in Arabidopsis thaliana, including a generative cell-specific 1 (gcs1)/hapless 2 mutant, the sperm cells of which are unable to fuse with female gametes, can only be maintained as heterozygous lines due to the infertile male or female gametes. Here, we report successful generation of a gcs1 homozygous mutant by heat-inducible removal of the GCS1 transgene. Using the gcs1 homozygous mutant as male, the defect in gamete fusion was observed with great frequency; in our direct observation by semi-in vivo fertilization assay using ovules, 100 % of discharged sperm cells in culture failed to show gamete fusion. More than 70 % of ovules in the pistil received a second pollen tube as attempted fertilization recovery. Moreover, gcs1 mutant sperm cells could fertilize female gametes at a low frequency in the pistil. This strategy to generate homozygous fertilization-defective mutants will facilitate novel approaches in plant reproduction research. Electronic supplementary material The online version of this article (doi:10.1007/s00497-015-0256-4) contains supplementary material, which is available to authorized users.
    02/2015; 28(1). DOI:10.1007/s00497-015-0256-4
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The protozoan Eimeria tenella is a common parasite of chickens, causing avian coccidiosis, a disease of on-going concern to agricultural industries. The high prevalence of E. tenella can be attributed to the resilient oocyst stage, which is transmitted between hosts in the environment. As in related Coccidia, development of the eimerian oocyst appears to be dependent on completion of the parasite's sexual cycle. RNA Seq transcriptome profiling offers insights into the mechanisms governing the biology of E. tenella sexual stages (gametocytes) and the potential to identify targets for blocking parasite transmission. Comparisons between the sequenced transcriptomes of E. tenella gametocytes and two asexual developmental stages, merozoites and sporozoites, revealed upregulated gametocyte transcription of 863 genes. Many of these genes code for proteins involved in coccidian sexual biology, such as oocyst wall biosynthesis and fertilisation, and some of these were characterised in more depth. Thus, macrogametocyte-specific expression and localisation was confirmed for two proteins destined for incorporation into the oocyst wall, as well as for a subtilisin protease and an oxidoreductase. Homologues of an oocyst wall protein and oxidoreductase were found in the related coccidian, Toxoplasma gondii, and shown to be macrogametocyte-specific. In addition, a microgametocyte gamete fusion protein, EtHAP2, was discovered. The need for novel vaccine candidates capable of controlling coccidiosis is rising and this panel of gametocyte targets represents an invaluable resource for development of future strategies to interrupt parasite transmission, not just in Eimeria but in other Coccidia, including Toxoplasma, where transmission blocking is a relatively unexplored strategy.
    BMC Genomics 02/2015; 16(1):94. DOI:10.1186/s12864-015-1298-6 · 4.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cell-cell fusion between gametes is a defining step during development of eukaryotes, yet we know little about the cellular and molecular mechanisms of the gamete membrane fusion reaction. HAP2 is the sole gamete-specific protein in any system that is broadly conserved and shown by gene disruption to be essential for gamete fusion. The wide evolutionary distribution of HAP2 (also known as GCS1) indicates it was present in the last eukaryotic common ancestor and, therefore, dissecting its molecular properties should provide new insights into fundamental features of fertilization. HAP2 acts at a step after membrane adhesion, presumably directly in the merger of the lipid bilayers. Here, we use the unicellular alga Chlamydomonas to characterize contributions of key regions of HAP2 to protein location and function. We report that mutation of three strongly conserved residues in the ectodomain has no effect on targeting or fusion, although short deletions that include those residues block surface expression and fusion. Furthermore, HAP2 lacking a 237-residue segment of the cytoplasmic region is expressed at the cell surface, but fails to localize at the apical membrane patch specialized for fusion and fails to rescue fusion. Finally, we provide evidence that the ancient HAP2 contained a juxta-membrane, multi-cysteine motif in its cytoplasmic region, and that mutation of a cysteine dyad in this motif preserves protein localization, but substantially impairs HAP2 fusion activity. Thus, the ectodomain of HAP2 is essential for its surface expression, and the cytoplasmic region targets HAP2 to the site of fusion and regulates the fusion reaction. © 2015. Published by The Company of Biologists Ltd.
    Development 02/2015; 142(5). DOI:10.1242/dev.118844 · 6.27 Impact Factor