Article

Effects of Calcium and Vitamin D on MLH1 and MSH2 Expression in Rectal Mucosa of Sporadic Colorectal Adenoma Patients

Department of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA.
Cancer Epidemiology Biomarkers & Prevention (Impact Factor: 4.32). 03/2010; 19(4):1022-32. DOI: 10.1158/1055-9965.EPI-09-0526
Source: PubMed

ABSTRACT To further clarify and develop calcium and vitamin D as chemopreventive agents against colorectal cancer in humans and develop modifiable biomarkers of risk for colorectal cancer, we conducted a pilot, randomized, double-blind, placebo-controlled, 2 x 2 factorial clinical trial to test the effects of calcium and vitamin D(3), alone and in combination, on key DNA mismatch repair proteins in the normal colorectal mucosa. Ninety-two men and women with at least one pathology-confirmed colorectal adenoma were treated with 2.0 g/d calcium or 800 IU/d vitamin D(3), alone or in combination, versus placebo over 6 months. Colorectal crypt overall expression and distribution of MSH2 and MLH1 proteins in biopsies of normal-appearing rectal mucosa were detected by automated immunohistochemistry and quantified by image analysis. After 6 months of treatment, MSH2 expression along the full lengths of crypts increased by 61% (P = 0.11) and 30% (P = 0.36) in the vitamin D and calcium groups, respectively, relative to the placebo group. The estimated calcium and vitamin D treatment effects were more pronounced in the upper 40% of crypts (differentiation zone) in which MSH2 expression increased by 169% (P = 0.04) and 107% (P = 0.13) in the vitamin D and calcium groups, respectively. These findings suggest that higher calcium and vitamin D intakes may result in increased DNA MMR system activity in the normal colorectal mucosa of sporadic adenoma patients and that the strongest effects may be vitamin D related and in the differentiation zone of the colorectal crypt.

Full-text

Available from: Eduard Sidelnikov, Jun 03, 2015
0 Followers
 · 
105 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: This brief review, based on an invited presentation at the 17th Workshop on Vitamin D, is to summarize a line of the author's research that has been directed at the intertwined missions of clarifying and/or developing vitamin D and calcium and as preventive agents against colorectal cancer in humans, understanding the mechanisms by which these agents may reduce risk for the disease, and developing 'treatable' biomarkers of risk for colorectal cancer. The biological plausibility and observational and clinical trial evidence for vitamin D and calcium in reducing risk for colorectal neoplasms, the development of pre-neoplastic biomarkers of risk for colorectal neoplasms, and the clinical trial findings from the author's research group on the efficacy of vitamin D and calcium in modulating these biomarkers are summarized. Regarding the latter, we tested the efficacy of 800 IU (20μg) of vitamin D3 and 2.0g of calcium daily, alone and combined vs. placebo over 6 months on modulating normal colon tissue and circulating hypothesis-based biomarkers of risk for colorectal neoplasms in a randomized, double-blind, placebo-controlled, 2×2 factorial design clinical trial (n=92). The tissue-based biomarkers were measured in biopsies of normal-appearing rectal mucosa using immunohistochemistry with quantitative image analysis, and a panel of circulating inflammation markers was measured using enzyme-linked immunoassays (ELISA). Statistically significant proportional tissue increases in the vitamin D group relative to the placebo group were found in bax (51%), p21 (141%), APC (48%), E-cadherin (78%), MSH2 (179%), the CaSR (39%), and CYP27B1 (159%). In blood, there was a 77% statistically significant decrease in a summary inflammation z-score. The findings for calcium were similar to those for vitamin D. These findings indicate that supplemental vitamin D3 or calcium can favorably modulate multiple normal colon tissue and circulating hypothesis-based biomarkers of risk for colorectal neoplasms in sporadic colorectal adenoma patients. This article is part of a Special Issue entitled '17th Vitamin D Workshop'. Copyright © 2015. Published by Elsevier Ltd.
    The Journal of Steroid Biochemistry and Molecular Biology 01/2015; 148. DOI:10.1016/j.jsbmb.2015.01.010 · 4.05 Impact Factor
  • Source
    Archivos latinoamericanos de nutrición 12/2010; 60(4):348-354. · 0.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The kidney-specific sodium-potassium-chloride cotransporter (NKCC2) protein encoded by solute carrier family 12 member 1 (SLC12A1) is the direct downstream effector of the inward-rectifier potassium channel (ROMK) encoded by potassium inwardly-rectifying channel, subfamily J, member 1 (KCNJ1), both of which are critical for calcium reabsorption in the kidney.
    Journal of Nutrition 08/2014; 144(11). DOI:10.3945/jn.114.196709 · 4.23 Impact Factor