Article

Glioma proteomics: Status and perspectives

Norlux Neuro-Oncology Laboratory, Department of Oncology, Centre de Recherche Public de la Santé (CRP-Santé), Luxembourg, Luxembourg.
Journal of proteomics (Impact Factor: 5.07). 03/2010; 73(10):1823-38. DOI: 10.1016/j.jprot.2010.03.007
Source: PubMed

ABSTRACT High grade gliomas are the most common brain tumors in adults and their malignant nature makes them the fourth biggest cause of cancer death. Major efforts in neuro-oncology research are needed to reach similar progress in treatment efficacy as that achieved for other cancers in recent years. In addition to the urgent need to identify novel effective drug targets against malignant gliomas, the search for glioma biomarkers and grade specific protein signatures will provide a much needed contribution to diagnosis, prognosis, treatment decision and assessment of treatment response. Over the past years glioma proteomics has been attempted at different levels, including proteome analysis of patient biopsies and bodily fluids, of glioma cell lines and animal models. Here we provide an extensive review of the outcome of these studies in terms of protein identifications (protein numbers and regulated proteins), with an emphasis on the methods used and the limitations of the studies with regard to biomarker discovery. This is followed by a perspective on novel technologies and on the potential future contribution of proteomics in a broad sense to understanding glioma biology.

1 Bookmark
 · 
108 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glioblastoma multiform (GBM) remains clinical indication with significant "unmet medical need". Innovative new therapy to eliminate residual tumor cells and prevent tumor recurrences is critically needed for this deadly disease. A major challenge of GBM research has been the identification of novel molecular therapeutic targets and accurate diagnostic/prognostic biomarkers. Many of the current clinical therapeutic targets of immunotoxins and ligand-directed toxins for high-grade glioma (HGG) cells are surface sialylated glycoproteins. Therefore, methods that systematically and quantitatively analyze cell surface sialoglycoproteins in human clinical tumor samples would be useful for the identification of potential diagnostic markers and therapeutic targets for malignant gliomas. In this study, we used the bioorthogonal chemical reporter strategy (BOCR) in combination with label-free quantitative mass spectrometry (LFQ-MS) to characterize and accurately quantify the individual cell surface sialoproteome in human GBM tissues, in fetal, adult human astrocytes, and in human neural progenitor cells (NPCs). We identified and quantified a total of 843 proteins, including 801 glycoproteins. Among the 843 proteins, 606 (72%) are known cell surface or secreted glycoproteins, including 156 CD-antigens, all major classes of cell surface receptor proteins, transporters, and adhesion proteins. Our findings identified several known as well as new cell surface antigens whose expression is predominantly restricted to human GBM tumors as confirmed by microarray transcription profiling, quantitative RT-PCR and immunohistochemical staining. This report presents the comprehensive identification of new biomarkers and therapeutic targets for the treatment of malignant gliomas using quantitative sialoglycoproteomics with clinically relevant, patient derived primary glioma cells.
    PLoS ONE 10/2014; 9(10):e110316. DOI:10.1371/journal.pone.0110316 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: OBJECT High-grade gliomas are the most common form of adult brain cancer, and patients have a dismal survival rate despite aggressive therapeutic measures. Intratumoral hypoxia is thought to be a main contributor to tumorigenesis and angiogenesis of these tumors. Because hypoxia-inducible factor 1α (HIF-1α) is the major mediator of hypoxia-regulated cellular control, inhibition of this transcription factor may reduce glioblastoma growth. METHODS Using an orthotopic mouse model with U87-LucNeo cells, the authors used RNA interference to knock down HIF-1α in vivo. The small interfering RNA (siRNA) was packaged using a novel multifunctional surfactant, 1-(aminoethyl) iminobis[N-(oleicylcysteinylhistinyl-1-aminoethyl)propionamide] (EHCO), a nucleic acid carrier that facilitates cellular uptake and intracellular release of siRNA. Stereotactic injection was used to deliver siRNA locally through a guide-screw system, and delivery/uptake was verified by imaging of fluorescently labeled siRNA. Osmotic pumps were used for extended siRNA delivery to model a commonly used human intracranial drug-delivery technique, convection-enhanced delivery. RESULTS Mice receiving daily siRNA injections targeting HIF-1α had a 79% lower tumor volume after 50 days of treatment than the controls. Levels of the HIF-1 transcriptional targets vascular endothelial growth factor (VEGF), glucose transporter 1 (GLUT-1), c-MET, and carbonic anhydrase-IX (CA-IX) and markers for cell growth (MIB-1 and microvascular density) were also significantly lower. Altering the carrier EHCO by adding polyethylene glycol significantly increased the efficacy of drug delivery and subsequent survival. CONCLUSIONS Treating glioblastoma with siRNA targeting HIF-1α in vivo can significantly reduce tumor growth and increase survival in an intracranial mouse model, a finding that has direct clinical implications.
    Journal of Neurosurgery 11/2014; 122(2):1-11. DOI:10.3171/2014.10.JNS132363 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: In this study, the 188Re-labeled PEGylated nanoliposome (188Re-liposome) was prepared and evaluated as a therapeutic agent for glioma. Materials and methods: The reporter cell line, F98luc was prepared via Lentivector expression kit system and used to set up the orthotopic glioma-bearing rat model for non-invasive bioluminescent imaging. The maximum tolerated dose applicable in Fischer344 rats was explored via body weight monitoring of the rats after single intravenous injection of 188Re-liposome with varying dosages before the treatment study. The OLINDA/EXM 1.1 software was utilized for estimating the radiation dosimetry. To assess the therapeutic efficacy, tumor-bearing rats were intravenously administered 188Re-liposome or normal saline followed by monitoring of the tumor growth and animal survival time. In addition, the histopathological examinations of tumors were conducted on the 188Re-liposome-treated rats. Results: By using bioluminescent imaging, the well-established reporter cell line (F98luc) showed a high relationship between cell number and its bioluminescent intensity (R2=0.99) in vitro; furthermore, it could also provide clear tumor imaging for monitoring tumor growth in vivo. The maximum tolerated dose of 188Re-liposome in Fischer344 rats was estimated to be 333 MBq. According to the dosimetry results, higher equivalent doses were observed in spleen and kidneys while very less were in normal brain, red marrow, and thyroid. For therapeutic efficacy study, the progression of tumor growth in terms of tumor volume and/or tumor weight was significantly slower for the 188Re-liposome-treated group than the control group (P<0.05). As a result, the lifespan of glioma-bearing rats treated with 188Re-liposome was prolonged 10.67% compared to the control group. Conclusion: The radiotherapeutic evaluation by dosimetry and survival studies have demonstrated that passive targeting 188Re-liposome via systemic administration can significantly prolong the lifespan of orthotopic glioma-bearing rats while maintaining reasonable systemic radiation safety. Therefore, 188Re-liposome could be a potential therapeutic agent for glioblastoma multiforme treatment.
    International Journal of Nanomedicine 01/2015; 10:463-473. DOI:10.2147/IJN.S75955 · 4.20 Impact Factor