Article

Global VGIIa isolates are of comparable virulence to the major fatal Cryptococcus gattii Vancouver Island outbreak genotype.

Molecular Mycology Research Laboratory, Centre for Infectious Disease and Microbiology, Westmead Millennium Institute, Westmead Hospital, Sydney Medical School - Westmead, The University of Sydney, Westmead, NSW, Australia.
Clinical Microbiology and Infection (Impact Factor: 4.58). 03/2010; 17(2):251-8. DOI:10.1111/j.1469-0691.2010.03222.x
Source: PubMed

ABSTRACT The ongoing cryptococcosis outbreak on Vancouver Island, BC, Canada, is caused by two VGII sub-genotypes of the primary pathogen, Cryptococcus gattii: VGIIa isolates predominate, whereas VGIIb isolates are rare. Although higher virulence of the VGIIa genotype has been proposed, an unresolved key question is whether VGIIa isolates from other regions are also more virulent than VGIIb isolates. We report the relationship between genotype and virulence for a global collection of C. gattii VGIIa and VGIIb isolates (from Australia, Argentina, Brazil, Canada, Thailand and the USA). In vitro and in vivo virulence studies were conducted. At 37°C, growth [at 18 h: 0.2 optical density (OD) difference, p 0.026; at 36 h: 0.6 OD difference, p 0.036) and mean melanin production (OD = 0.25 vs. OD = 0.15, p 0.059] of VGIIa isolates was greater than that of VGIIb isolates. The inhibitory effect of high temperature on melanin production of VGIIa isolates was less than that of VGIIb isolates (OD = 0.36 vs. OD = 0.69; p 0.001). Capsule production at 37°C of VGIIa isolates was less than that of VGIIb isolates. All VGIIa isolates were fertile, whereas only 17% of VGIIb isolates were fertile (p <0.001). In vivo virulence studies using the BALB/c mice nasal inhalation model revealed that VGIIa isolates were more virulent than VGIIb isolates (p <0.001) independent of their clinical (p 0.003) or environmental origin (p <0.001). This study established a clear association between genotype and virulence of the primary fungal pathogen, C. gattii.

0 0
 · 
0 Bookmarks
 · 
53 Views
  • [show abstract] [hide abstract]
    ABSTRACT: Recent studies have used flow cytometry (FCM) as an important alternative method to determine the antifungal susceptibility of yeasts compared to the broth microdilution Clinical and Laboratory Standards Institute (CLSI) reference procedure. We present a comparative study of the broth microdilution method and flow cytometry to assess the in vitro antifungal susceptibility of Cryptococcus neoformans (n = 16) and C. gattii (n = 24) to fluconazole. The minimum inhibitory concentration (MIC) assays by flow cytometry were defined as the lowest drug concentration that showed ˜ 50% of the count of acridine orange negative cells compared to that of the growth control. Categorical classification showed all C. neoformans isolates were susceptible to fluconazole. Three isolates of C. gattii were susceptible dose-dependent and the remaining 21 isolates were classified as susceptible. MICs comparison of both methodologies demonstrated 100% categorical agreement of the results obtained for C. neoformans and C. gattii. The MICs obtained with the CLSI-approved method and flow cytometry were compared by the Spearman correlation test and a significant Pv = 0.001. The flow cytometric method has the advantage of analyzing a large and constant number of cells in less time, i.e., 9 h incubation for fluconazole using acridine orange versus 72 h for broth microdilution method. In conclusion, the two methods were comparable and flow cytometry method can expedite and improve the results of in vitro susceptibility tests of C. neoformans and C. gattii against fluconazole and also allows comparative studies in vitro/in vivo more rapidly, which along with clinical data, could assist in selecting the most appropriate treatment choice.
    Medical mycology: official publication of the International Society for Human and Animal Mycology 07/2013; · 2.13 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Cryptococcosis is a fungal disease affecting more than one million people per year worldwide. The main etiological agents of cryptococcosis are the two sibling species Cryptococcus neoformans and Cryptococcus gattii that present numerous differences in geographical distribution, ecological niches, epidemiology, pathobiology, clinical presentation and molecular characters. Genotyping of the two Cryptococcus species at subspecies level supplies relevant information to understand how this fungus has spread worldwide, the nature of its population structure, and how it evolved to be a deadly pathogen. At present, nine major molecular types have been recognized: VNI, VNII, VNB, VNIII, and VNIV among C. neoformans isolates, and VGI, VGII, VGIII, and VGIV among C. gattii isolates. In this paper all the information available in the literature concerning the isolation of the two Cryptococcus species has been collected and analyzed on the basis of their geographical origin, source of isolation, level of identification, species, and molecular type. A detailed analysis of the geographical distribution of the major molecular types in each continent has been described and represented on thematic maps. This study represents a useful tool to start new epidemiological surveys on the basis of the present knowledge.
    Scientifica. 01/2013; 2013:675213.
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Over the past two decades, several fungal outbreaks have occurred, including the high-profile 'Vancouver Island' and 'Pacific Northwest' outbreaks, caused by Cryptococcus gattii, which has affected hundreds of otherwise healthy humans and animals. Over the same time period, C. gattii was the cause of several additional case clusters at localities outside of the tropical and subtropical climate zones where the species normally occurs. In every case, the causative agent belongs to a previously rare genotype of C. gattii called AFLP6/VGII, but the origin of the outbreak clades remains enigmatic. Here we used phylogenetic and recombination analyses, based on AFLP and multiple MLST datasets, and coalescence gene genealogy to demonstrate that these outbreaks have arisen from a highly-recombining C. gattii population in the native rainforest of Northern Brazil. Thus the modern virulent C. gattii AFLP6/VGII outbreak lineages derived from mating events in South America and then dispersed to temperate regions where they cause serious infections in humans and animals.
    PLoS ONE 01/2013; 8(8):e71148. · 3.73 Impact Factor