High resolution spectroscopy of the hot post-AGB stars IRAS 13266-5551 (CPD-55 5588) and IRAS 17311-4924 (Hen3-1428) 01/2005; DOI: 10.1051/0004-6361:20041506

ABSTRACT High resolution spectra covering the wavelength range 4900 Å to 8250 Å of the hot post-AGB stars IRAS 13266-5551 (CPD-55 5588) and IRAS 17311-4924 (Hen3-1428) reveal absorption lines of C II, N II, O II, Al III, Si III and Fe III and a rich emission line spectrum consisting of H I, He I, C II, N I, O I, Mg II, Al II, Si II, V I, Mn I, Fe III, [Fe II] and [Cr II]. The presence of [N II] and [O I] lines and absence of [O III] indicate low excitation nebulae around these stars. The components of Na I absorption lines indicate the presence of neutral circumstellar envelopes in addition to the low excitation nebulae around these two hot post-AGB stars. The H$_\alpha$ lines show P-Cygni profiles indicating ongoing post-AGB mass loss. From the absorption lines we derived heliocentric radial velocities of 65.31 $\pm$ 0.34 km s$^{-1}$ and 27.55 $\pm$ 0.74 km s$^{-1}$ for IRAS 13266-5551 and IRAS 17311-4924 respectively. The high Galactic latitude and large radial velocity of IRAS 13266-5551 indicate that it belongs to the old disk population. Preliminary estimates for the CNO abundances in IRAS 13266-5551 are obtained.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An analysis of high-resolution Anglo-Australian Telescope (AAT)/ University College London Echelle Spectrograph (UCLES) optical spectra for the ultraviolet (UV)-bright star ROA 5701 in the globular cluster omega Cen (NGC 5139) is performed, using non-local thermodynamic equilibrium (non-LTE) model atmospheres to estimate stellar atmospheric parameters and chemical composition. Abundances are derived for C, N, O, Mg, Si and S, and compared with those found previously by Moehler et al. We find a general metal underabundance relative to young B-type stars, consistent with the average metallicity of the cluster. Our results indicate that ROA 5701 has not undergone a gas-dust separation scenario as previously suggested. However, its abundance pattern does imply that ROA 5701 has evolved off the AGB prior to the onset of the third dredge-up.
    Monthly Notices of the Royal Astronomical Society 06/2006; · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present FEROS high-resolution (R~45000) optical spectroscopy of 34 Herbig Ae/Be star candidates with previously unknown or poorly constrained spectral types. Within the sample, 16 sources are positionally coincident with nearby (d<250 pc) star-forming regions (SFRs). All the candidates have IR excess. We determine the spectral type and luminosity class of the sources, derive their radial and rotational velocities, and constrain their distances employing spectroscopic parallaxes. We confirm 13 sources as Herbig Ae/Be stars and find one classical T Tauri star. Three sources are emission line early-type giants and may be Herbig Ae/Be stars. One source is a main-sequence A-type star. Fourteen sources are post-main-sequence giant and supergiant stars. Two sources are extreme emission-line stars. Most of the sources appear to be background stars at distances over 700 pc. We show that high-resolution optical spectroscopy is a crucial tool for distinguishing young stars from post-main sequence stars in samples taken from emission-line star catalogs based on low-resolution spectroscopy. Within the sample, 3 young stars (CD-38 4380, Hen 3-1145, and HD 145718) and one early-type luminosity class III giant with emission lines (Hen 3-416) are at distances closer than 300 pc and are positionally coincident with a nearby SFR. These 4 sources are likely to be nearby young stars and are interesting for follow-up observations at high-angular resolution. Furthermore, seven confirmed Herbig Ae/Be stars at d>700 pc (Hen 2-80, Hen 3-1121 N&S, HD 313571, MWC 953, WRAY 15-1435, and Th 17-35) are inside or close (<5') to regions with extended 8 micron continuum emission and in their 20' vicinity have astronomical sources characteristic of SFRs. These 7 sources are likely to be members of SFRs. These regions are attractive for future studies of their stellar content. Comment: 24 pages, 6 Figures, accepted by Astronomy and Astrophysics, in press.
    Astronomy and Astrophysics 04/2010; · 5.08 Impact Factor


Available from