Article

cAMP-dependent protein kinase regulates post-translational processing and expression of complex I subunits in mammalian cells.

Department of Medical Biochemistry, Biology and Physics (DIBIFIM), University of Bari, Bari, Italy.
Biochimica et Biophysica Acta (Impact Factor: 4.66). 03/2010; 1797(6-7):649-58. DOI: 10.1016/j.bbabio.2010.03.013
Source: PubMed

ABSTRACT Work is presented on the role of cAMP-dependent protein phosphorylation in post-translational processing and biosynthesis of complex I subunits in mammalian cell cultures. PKA-mediated phosphorylation of the NDUFS4 subunit of complex I promotes in cell cultures in vivo import/maturation in mitochondria of the precursor of this protein. The import promotion appears to be associated with the observed cAMP-dependent stimulation of the catalytic activity of complex I. These effects of PKA are counteracted by activation of protein phosphatase(s). PKA and the transcription factor CREB play a critical role in the biosynthesis of complex I subunits. CREB phosphorylation, by PKA and/or CaMKs, activates at nuclear and mitochondrial level a transcriptional regulatory cascade which promotes the concerted expression of nuclear and mitochondrial encoded subunits of complex I and other respiratory chain proteins.

0 Bookmarks
 · 
76 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: To allow the rational design of effective treatment strategies for human mitochondrial disorders, a proper understanding of their biochemical and pathophysiological aspects is required. The development and evaluation of these strategies require suitable model systems. In humans, inherited complex I (CI) deficiency is one of the most common deficiencies of the mitochondrial oxidative phosphorylation system. During the last decade, various cellular and animal models of CI deficiency have been presented involving mutations and/or deletion of the Ndufs4 gene, which encodes the NDUFS4 subunit of CI. In this review, we discuss these models and their validity for studying human CI deficiency. © 2013 IUBMB Life.
    International Union of Biochemistry and Molecular Biology Life 02/2013; · 2.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DS (Down's syndrome) is the most common human aneuploidy associated with mental retardation and early neurodegeneration. Mitochondrial dysfunction has emerged as a crucial factor in the pathogenesis of numerous neurological disorders including DS, but the cause of mitochondrial damage remains elusive. In the present study, we identified new molecular events involved in mitochondrial dysfunction which could play a role in DS pathogenesis. We analysed mitochondrial respiratory chain function in DS-HSFs (Down's syndrome human foetal skin fibroblasts; human foetal skin fibroblasts with chromosome 21 trisomy) and found a selective deficit in the catalytic efficiency of mitochondrial complex I. The complex I deficit was associated with a decrease in cAMP-dependent phosphorylation of the 18 kDa subunit of the complex, due to a decrease in PKA (protein kinase A) activity related to reduced basal levels of cAMP. Consistently, exposure of DS-HSFs to db-cAMP (dibutyryl-cAMP), a membrane-permeable cAMP analogue, stimulated PKA activity and consequently rescued the deficit of both the cAMP-dependent phosphorylation and the catalytic activity of complex I; conversely H89, a specific PKA inhibitor, suppressed these cAMP-dependent activations. Furthermore, in the present paper we report a 3-fold increase in cellular levels of ROS (reactive oxygen species), in particular superoxide anion, mainly produced by DS-HSF mitochondria. ROS accumulation was prevented by db-cAMP-dependent activation of complex I, suggesting its involvement in ROS production. Taken together, the results of the present study suggest that the drastic decrease in basal cAMP levels observed in DS-HSFs participates in the complex I deficit and overproduction of ROS by DS-HSF mitochondria.
    Biochemical Journal 02/2011; 435(3):679-88. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A study is presented on the expression of mitochondrial oxidative phosphorylation complexes in exponentially growing and serum-starved, quiescent human fibroblast cultures. The functional levels of respiratory complexes I and III and complex V (ATP synthase) were found to be severely depressed in serum-starved fibroblasts. The depression of OXPHOS complexes was associated with reduced levels of PGC-1α, and the down-stream NRF1 and TFAM transcription factors. In serum-starved fibroblasts decrease of the catalytic activity of PKA and phosphorylation of CREB, the transcription coactivator of the PGC-1α gene, was found. Hydroxytyrosol prevented the decline in the expression of the PGC-1α transcription cascade of OXPHOS complexes in serum-starved fibroblast cultures. The positive effect of HT was associated with activation of PKA and CREB phosphorylation. These results show involvement of PKA, CREB and PGC-1α in the regulation of OXPHOS in cell transition from the replicating to the quiescent state.
    Biochimica et Biophysica Acta 01/2014; · 4.66 Impact Factor

Full-text (2 Sources)

View
2 Downloads
Available from
Jun 5, 2014