Article

Two populations of neurokinin 1 receptor-expressing projection neurons in lamina I of the rat spinal cord that differ in AMPA receptor subunit composition and density of excitatory synaptic input

Neuroscience and Molecular Pharmacology, Faculty of Biomedical and Life Sciences, West Medical Building, University Avenue, University of Glasgow, Glasgow G12 8QQ, UK.
Neuroscience (Impact Factor: 3.33). 03/2010; 167(4):1192-204. DOI: 10.1016/j.neuroscience.2010.03.028
Source: PubMed

ABSTRACT Lamina I of the spinal cord contains many projection neurons that express the neurokinin 1 receptor (NK1r). It has been reported that these cells can undergo long-term potentiation (LTP), which may result from insertion of AMPA-type glutamate receptors (AMPArs) containing GluA1 or GluA4 subunits. We therefore investigated synaptic AMPAr expression on these cells with immunocytochemistry following antigen-retrieval. We also examined their density of glutamatergic input (by analysing AMPAr synaptic puncta and contacts from glutamatergic boutons), and phosphorylation of extracellular signal-regulated kinases (pERKs) following noxious stimulation. Our results indicate that there are two populations of NK1r-expressing projection neurons: large GluA4(+)/GluA1(-) cells with a high density of glutamatergic input and small GluA1(+)/GluA4(-) cells with a much lower input density. Results from pERK experiments suggested that the two groups may not differ in the types of noxious stimulus that activate them. Glutamatergic synapses on distal dendrites of the large cells were significantly longer than those on proximal dendrites, which presumably compensates for the greater attenuation of distally-generated excitatory postsynaptic currents (EPSCs). Both types of cell received contacts from peptidergic primary afferents, however, on the large cells these appeared to constitute over half of the glutamatergic synapses, and were often associated with elongated AMPAr puncta. This suggests that these afferents, which probably contain substance P, provide a powerful, secure synaptic input to large NK1r-expressing projection neurons. These results demonstrate the importance of GluA4-containing AMPArs in nociceptive transmission and raise the possibility that different forms of LTP in lamina I projection neurons may be related to differential expression of GluA1/GluA4.

Full-text

Available from: Kholoud Al Ghamdi, May 28, 2015
1 Follower
 · 
88 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Spinal cord stimulation (SCS) is a clinical therapy for chronic, neuropathic pain, but an incomplete understanding of the mechanisms underlying SCS contributes to the lack of improvement in SCS efficacy over time. To study the mechanisms underlying SCS, we constructed a biophysically-based network model of the dorsal horn circuit consisting of interconnected dorsal horn interneurons and a wide dynamic range (WDR) projection neuron and representations of both local and surround receptive field inhibition. We validated the network model by reproducing cellular and network responses relevant to pain processing including wind-up, A-fiber mediated inhibition, and surround receptive field inhibition. We then simulated the effects of SCS on the activity of the WDR projection neuron and found that the response of the model WDR neuron to SCS depends on the SCS frequency; SCS frequencies of 30-100 Hz maximally inhibited the model WDR neuron, while frequencies under 30 Hz and over 100 Hz excited the model WDR neuron. We also studied the impacts on the effects of SCS of loss of inhibition, either due to the loss of GABA or KCC2 function. Reducing the influence of local and surround GABAergic interneurons by weakening their inputs or their connections to the WDR neuron and shifting the anionic reversal potential of the WDR neurons upwards each reduced the range of optimal SCS frequencies and changed the frequency at which SCS had a maximal effect. The results of this study provide insights into the mechanisms of SCS and pave the way for improved SCS parameter selection.
    Journal of Neurophysiology 04/2014; 112(3). DOI:10.1152/jn.00254.2014 · 3.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fine myelinated (Aδ) nociceptors are responsible for fast, well-localised pain, but relatively little is known about their postsynaptic targets in the spinal cord, and therefore about their roles in the neuronal circuits that process nociceptive information. Here we show that transganglionically-transported cholera toxin B subunit (CTb) labels a distinct set of afferents in lamina I that are likely to correspond to Aδ nociceptors, and that most of these lack neuropeptides. The vast majority of lamina I projection neurons can be retrogradely labelled from the lateral parabrachial area, and these can be divided into two major groups based on expression of the neurokinin 1 receptor (NK1r). We show that CTb-labelled afferents form contacts on 43% of the spinoparabrachial lamina I neurons that lack the NK1r, but on a significantly smaller proportion (26%) of those that express the receptor. We also confirm with electron microscopy that these contacts are associated with synapses. Among the spinoparabrachial neurons that received contacts from CTb-labelled axons, contact density was considerably higher on NK1r-lacking cells than on those with the NK1r. By comparing the density of CTb contacts with those from other types of glutamatergic bouton, we estimate that non-peptidergic Aδ nociceptors may provide over half of the excitatory synapses on some NK1r-lacking spinoparabrachial cells. These results provide further evidence that synaptic inputs to dorsal horn projection neurons are organised in a specific way. Taken together with previous studies, they suggest that both NK1r(+) and NK1r-lacking lamina I projection neurons are directly innervated by Aδ nociceptive afferents.
    Pain 08/2014; 155(11). DOI:10.1016/j.pain.2014.08.023 · 5.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Monoacylglycerol lipase (MGL) is a multifunctional serine hydrolase, which terminates anti-nociceptive endocannabinoid signaling and promotes pro-nociceptive prostaglandin signaling. Accordingly, both acute nociception and its sensitization in chronic pain models are prevented by systemic or focal spinal inhibition of MGL activity. Despite its analgesic potential, the neurobiological substrates of beneficial MGL blockade have remained unexplored. Therefore, we examined the regional, cellular and subcellular distribution of MGL in spinal circuits involved in nociceptive processing. All immunohistochemical findings obtained with light, con-focal or electron microscopy were validated in MGL-knockout mice. Immunoperoxidase staining revealed a highly concentrated accumulation of MGL in the dorsal horn, especially in superficial layers. Further electron microscopic analysis uncovered that the majority of MGL-immunolabeling is found in axon terminals forming either asymmetric glutamatergic or symmetric c-aminobutyric acid/glycinergic synapses in laminae I/IIo. In line with this presynaptic localization, analysis of double-immunofluorescence stain-ing by confocal microscopy showed that MGL colocalizes with neurochemical markers of peptidergic and non-peptidergic nocicep-tive terminals, and also with markers of local excitatory or inhibitory interneurons. Interestingly, the ratio of MGL-immunolabeling was highest in calcitonin gene-related peptide-positive peptidergic primary afferents, and the staining intensity of nociceptive ter-minals was significantly reduced in MGL-knockout mice. These observations highlight the spinal nociceptor synapse as a potential anatomical site for the analgesic effects of MGL blockade. Moreover, the presence of MGL in additional terminal types raises the possibility that MGL may play distinct regulatory roles in synaptic endocannabinoid or prostaglandin signaling according to its dif-ferent cellular locations in the dorsal horn pain circuitry.
    European Journal of Neuroscience 02/2014; 39(3):419. DOI:10.1111/ejn.12470 · 3.67 Impact Factor