Experimental treatment of oestrogen receptor (ER) positive breast cancer with tamoxifen and brivanib alaninate, a VEGFR-2/FGFR-1 kinase inhibitor: a potential clinical application of angiogenesis inhibitors.

Dartmouth Hitchcock Medical Center, Dept. of Surgery, Manchester, NH 03104, USA.
European journal of cancer (Oxford, England: 1990) (Impact Factor: 4.12). 03/2010; 46(9):1537-53. DOI: 10.1016/j.ejca.2010.02.018
Source: PubMed

ABSTRACT Tamoxifen, a selective oestrogen receptor modulator (SERM), and brivanib alaninate, a vascular endothelial growth factor receptor 2 (VEGFR-2) inhibitor, are two target specific agents that result in a substantial decrease in tumour growth when given alone. Tamoxifen activates SERM stimulated breast and endometrial tumour growth. Tamoxifen and brivanib alaninate have side-effects that can affect therapeutic outcomes. The primary goal of the current study was to evaluate the therapeutic effects of lower doses of both agents when given in combination to mice with SERM sensitive, oestrogen stimulated tumour xenografts (MCF-7 E2 tumours). Experiments were conducted to evaluate the response of SERM stimulated breast (MCF-7 Tam, MCF-7 Ral) and endometrial tumours (EnCa 101) to demonstrate the activity of brivanib alaninate in SERM resistant models.
In the current study, tumour xenografts were minced and bi-transplanted into the mammary fat pads of athymic, ovariectomised mice. Preliminary experiments were conducted to determine an effective oral dose of tamoxifen and brivanib alaninate that had minimal effect on tumour growth. Doses of 125 microg of tamoxifen and 0.05 mg/g of brivanib alaninate were evaluated. An experiment was designed to evaluate the effect of the two agents together when started at the time of tumour implantation. An additional experiment was done in which tumours were already established and then treated, to obtain enough tumour tissue for molecular analysis.
Brivanib alaninate was effective at inhibiting tumour growth in SERM sensitive (MCF-7 E2) and SERM stimulated (EnCa 101, MCF-7 Ral, MCF-7 Tam) models. The effect of the low dose drug combination as an anti-tumour strategy for SERM sensitive (MCF-7 E2) in early treatment was as effective as higher doses of either drug used alone. In established tumours, the combination is successful at decreasing tumour growth, while neither agent alone is effective. Molecular analysis revealed a decreased phosphorylation of VEGFR-2 in tumours that were treated with brivanib alaninate and an increase in VEGFA transcription to compensate for the blockade of VEGFR-2 by increasing the transcription of VEGFA. Tamoxifen increases the phosphorylation of VEGFR-2 and this effect is abrogated by brivanib alaninate. There was also increased necrosis in tumours treated with brivanib alaninate.
Historically, tamoxifen has a role in blocking angiogenesis as well as the blockade of the ER. Tamoxifen and a low dose of an angiogenesis inhibitor, brivanib alaninate, can potentially be combined not only to maximise therapeutic efficacy but also to retard SERM resistant tumour growth.

  • [Show abstract] [Hide abstract]
    ABSTRACT: In the majority of cases, endometrial cancer is localized and highly curable through surgery and adjuvant radiotherapy. However, for patients with advanced or metastatic disease, prognosis is poor. Systemic treatments such as cytotoxic chemotherapy or hormonal therapy can cause significant toxicities including chemotherapy-related gastrointestinal, neurologic, and immunosuppressive toxicities and hormone-related hypertension, increased blood sugar, thrombosis, and pulmonary emboli. In addition, these therapies rarely lead to sustained disease control. Novel therapies with greater efficacy and reduced toxicity are needed. Recent progress in the identification of genetic abnormalities in cell signaling proteins has spurred the development of targeted agents for the treatment of patients with endometrial cancer. The fibroblast growth factor receptor (FGFR) pathway is one of several signaling pathways that have been implicated in the pathogenesis and progression of endometrial cancer. The activity of novel FGFR-targeted agents in preclinical endometrial cancer models and clinical trials will be reviewed.
    Cancer Treatment Reviews 11/2013; · 6.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Fibroblast growth factors (FGFs) along with their receptors (FGFRs) are involved in several cellular functions, from embryogenesis to metabolism. Because of the ability of FGFR signalling to induce cell proliferation, migration and survival in cancer, these have been found to become overactivated by several mechanisms, including gene amplification, chromosomal translocation and mutations. New evidences indicate that FGFs and FGFRs may act in an oncogenic fashion to promote multiple steps of cancer progression by inducing mitogenic and survival signals, as well as promoting epithelial-to-mesenchymal transition, invasion and tumour angiogenesis. This review focuses on the predictive and prognostic role of FGFRs, the role of FGFR signalling and how it may be most appropriately therapeutically targeted in breast cancer. Areas covered: Activation of the FGFR pathway is a common event in many cancer types and for this reason FGFR is an important potential target in cancer treatment. Relevant literature was reviewed to identify current and future role of FGFR family as a possible guide for selecting those patients who would be poor or good responders to the available or the upcoming target therapies for breast cancer treatment. Expert opinion: The success of a personalised medicine approach using targeted therapies ultimately depends on being capable of identifying the patients who will benefit the most from any given drug. Outlining the molecular mechanisms of FGFR signalling and discussing the role of this pathway in breast cancer, we would like to endorse the incorporation of specific patient selection biomakers with the rationale for therapeutic intervention with FGFR-targeted therapy in breast cancer.
    Expert Opinion on Therapeutic Targets 06/2014; 18(6):665-78. · 4.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The estrogen receptor α is recognized as important pharmaceutical target for breast cancer therapy, and vascular endothelial growth factor receptors (VEGFRs) play important roles in tumor angiogenesis including breast cancer. A series of 2,3-diaryl isoquinolinone derivatives were designed and synthesized targeting both estrogen receptor α (ERα) and VEGFR-2. Bioactivity evaluation showed that compounds 7c, 7d and 7f exhibited significant anti-proliferative and anti-angiogenesis activities via ERα and VEGFR-2 dependent mechanisms.
    Bioorganic & medicinal chemistry letters 03/2014; · 2.65 Impact Factor

Full-text (2 Sources)

Available from
Aug 14, 2014