Experimental treatment of oestrogen receptor (ER) positive breast cancer with tamoxifen and brivanib alaninate, a VEGFR-2/FGFR-1 kinase inhibitor: A potential clinical application of angiogenesis inhibitors

Dartmouth Hitchcock Medical Center, Dept. of Surgery, Manchester, NH 03104, USA.
European journal of cancer (Oxford, England: 1990) (Impact Factor: 4.82). 03/2010; 46(9):1537-53. DOI: 10.1016/j.ejca.2010.02.018
Source: PubMed

ABSTRACT Tamoxifen, a selective oestrogen receptor modulator (SERM), and brivanib alaninate, a vascular endothelial growth factor receptor 2 (VEGFR-2) inhibitor, are two target specific agents that result in a substantial decrease in tumour growth when given alone. Tamoxifen activates SERM stimulated breast and endometrial tumour growth. Tamoxifen and brivanib alaninate have side-effects that can affect therapeutic outcomes. The primary goal of the current study was to evaluate the therapeutic effects of lower doses of both agents when given in combination to mice with SERM sensitive, oestrogen stimulated tumour xenografts (MCF-7 E2 tumours). Experiments were conducted to evaluate the response of SERM stimulated breast (MCF-7 Tam, MCF-7 Ral) and endometrial tumours (EnCa 101) to demonstrate the activity of brivanib alaninate in SERM resistant models.
In the current study, tumour xenografts were minced and bi-transplanted into the mammary fat pads of athymic, ovariectomised mice. Preliminary experiments were conducted to determine an effective oral dose of tamoxifen and brivanib alaninate that had minimal effect on tumour growth. Doses of 125 microg of tamoxifen and 0.05 mg/g of brivanib alaninate were evaluated. An experiment was designed to evaluate the effect of the two agents together when started at the time of tumour implantation. An additional experiment was done in which tumours were already established and then treated, to obtain enough tumour tissue for molecular analysis.
Brivanib alaninate was effective at inhibiting tumour growth in SERM sensitive (MCF-7 E2) and SERM stimulated (EnCa 101, MCF-7 Ral, MCF-7 Tam) models. The effect of the low dose drug combination as an anti-tumour strategy for SERM sensitive (MCF-7 E2) in early treatment was as effective as higher doses of either drug used alone. In established tumours, the combination is successful at decreasing tumour growth, while neither agent alone is effective. Molecular analysis revealed a decreased phosphorylation of VEGFR-2 in tumours that were treated with brivanib alaninate and an increase in VEGFA transcription to compensate for the blockade of VEGFR-2 by increasing the transcription of VEGFA. Tamoxifen increases the phosphorylation of VEGFR-2 and this effect is abrogated by brivanib alaninate. There was also increased necrosis in tumours treated with brivanib alaninate.
Historically, tamoxifen has a role in blocking angiogenesis as well as the blockade of the ER. Tamoxifen and a low dose of an angiogenesis inhibitor, brivanib alaninate, can potentially be combined not only to maximise therapeutic efficacy but also to retard SERM resistant tumour growth.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Estrogen (E2)-induced transcription requires coordinated recruitment of estrogen receptor α (ER) and multiple factors at the promoter of activated genes. However, the precise mechanism by which this complex stimulates the RNA polymerase II activity required to execute transcription is largely unresolved. We investigated the role of bromodomain (BRD) containing bromodomain and extra-terminal (BET) proteins, in E2-induced growth and gene activation. JQ1, a specific BET protein inhibitor, was used to block BET protein function in two different ER-positive breast cancer cell lines (MCF7 and T47D). Real-time PCR and ChIP assays were used to measure RNA expression and to detect recruitment of various factors on the genes, respectively. Protein levels were measured by Western blotting. JQ1 suppressed E2-induced growth and transcription in both MCF7 and T47D cells. The combination of E2 and JQ1 down-regulated the levels of ER protein in MCF7 cells but the loss of ER was not responsible for JQ1-mediated inhibition of E2 signaling. JQ1 did not disrupt E2-induced recruitment of ER and co-activator (SRC3) at the E2-responsive DNA elements. The E2-induced increase in histone acetylation was also not altered by JQ1. However, JQ1 blocked the E2-induced transition of RNA polymerase II from initiation to elongation by stalling it at the promoter region of the responsive genes upstream of the transcription start site. This study establishes BET proteins as the key mediators of E2-induced transcriptional activation. This adds another layer of complexity to the regulation of estrogen-induced gene activation that can potentially be targeted for therapeutic intervention.
    Breast Cancer Research and Treatment 02/2015; 150(2). DOI:10.1007/s10549-015-3319-1 · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fibroblast growth factor receptor (FGFR) signaling is involved in multiple biological processes, including cell proliferation, survival, differentiation, migration, and apoptosis during embryonic development and adult tissue homeostasis. Given its role in the activation of critical signaling pathways, aberrant FGFR signaling has been implicated in multiple cancer types. A comprehensive search of PubMed and congress abstracts was conducted to identify reports on FGFR pathway components in breast cancer. In breast cancers, FGFR1 and FGFR4 gene amplification and single nucleotide polymorphisms in FGFR2 and FGFR4 have been detected. Commonly, these FGFR aberrations and gene amplifications lead to increased FGFR signaling and have been linked with poor prognosis and resistance to breast cancer treatments. Here, we review the role of FGFR signaling and the impact of FGFR genetic amplifications/aberrations on breast tumors. In addition, we summarize the most recent preclinical and clinical data on FGFR-targeted therapies in breast cancer. Finally, we highlight the ongoing clinical trials of the FGFR-targeted agents dovitinib, AZD4547, lucitanib, BGJ398, and JNJ-42756493, which are selected for patients with FGFR pathway-amplified breast cancer. Aberrant FGFR pathway amplification may drive some breast cancers. Inhibition of FGFR signaling is being explored in the clinic, and data from these trials may refine our ability to select patients who would best respond to these treatments.
    Breast Cancer Research and Treatment 02/2015; 150(1). DOI:10.1007/s10549-015-3301-y · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Lobular breast carcinoma usually shows poor responsiveness to chemotherapies and often lacks targeted therapies. Since FGFR1 expression has been shown to play pivotal roles in primary breast cancer tumorigenesis, we sought to analyze the status of FGFR1 gene in a metastatic setting of lobular breast carcinoma, since promising FGFR1 inhibitors has been recently developed. METHODS: Fifteen tissue metastases from lobular breast carcinomas with matched primary infiltrative lobular breast carcinoma were recruited. Eleven cases showed loco-regional lymph-nodal and four haematogenous metastases.FGFR-1 gene (8p12) amplification was evaluated by chromogenic in situ hybridization (CISH) analysis. Her-2/neu and topoisomerase-IIalpha gene status was assessed. E-cadherin and Hercept Test were also performed. We distinguished amplification (>6 or cluster of signals) versus gains (3--6 signals) of the locus specific FGFR-1 gene. RESULTS: Three (20%) primary lobular breast carcinomas showed >6 or cluster of FGFR1 signals (amplification), six cases (40%) had a mean of three (range 3--6) chromogenic signals (gains) whereas in 6 (40%) was not observed any abnormality. Three of 15 metastasis (20%) were amplified, 2/15 (13,4%) did not. The ten remaining cases (66,6%) showed three chromogenic signals.The three cases with FGFR-1 amplification matched with those primary breast carcinomas showing FGFR-1 amplification. The six cases showing FGFR-1 gains in the primary tumour again showed FGFR-1 gains in the metastases. Four cases showed gains of FGFR-1 gene signals in the metastases and not in the primary tumours. Her-2/neu gene amplification was not observed in all cases but one (6%) case. Topoisomerase-IIalpha was not amplified in all cases. CONCLUSIONS: 1) a subset of metastatic lobular breast carcinoma harbors FGFR-1 gene amplification or gains of chromogenic signals; 2) a minor heterogeneity has been observed after matching primary and metastatic carcinomas; 3) in the era of tailored therapies, patients affected by the lobular subtype of breast carcinoma with FGFR1 amplification could be approached to the new target biological therapy such as emerging FGFR-1 inhibitors.
    Journal of Experimental & Clinical Cancer Research 12/2012; 31(1):103. DOI:10.1186/1756-9966-31-103 · 3.27 Impact Factor