Genetic evidence supports linguistic affinity of Mlabri - a hunter-gatherer group in Thailand

Chinese Academy of Sciences and Max Planck Society (CAS-MPG) Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
BMC Genetics (Impact Factor: 2.4). 03/2010; 11(1):18. DOI: 10.1186/1471-2156-11-18
Source: PubMed

ABSTRACT The Mlabri are a group of nomadic hunter-gatherers inhabiting the rural highlands of Thailand. Little is known about the origins of the Mlabri and linguistic evidence suggests that the present-day Mlabri language most likely arose from Tin, a Khmuic language in the Austro-Asiatic language family. This study aims to examine whether the genetic affinity of the Mlabri is consistent with this linguistic relationship, and to further explore the origins of this enigmatic population.
We conducted a genome-wide analysis of genetic variation using more than fifty thousand single nucleotide polymorphisms (SNPs) typed in thirteen population samples from Thailand, including the Mlabri, Htin and neighboring populations of the Northern Highlands, speaking Austro-Asiatic, Tai-Kadai and Hmong-Mien languages. The Mlabri population showed higher LD and lower haplotype diversity when compared with its neighboring populations. Both model-free and Bayesian model-based clustering analyses indicated a close genetic relationship between the Mlabri and the Htin, a group speaking a Tin language.
Our results strongly suggested that the Mlabri share more recent common ancestry with the Htin. We thus provided, to our knowledge, the first genetic evidence that supports the linguistic affinity of Mlabri, and this association between linguistic and genetic classifications could reflect the same past population processes.

Download full-text


Available from: Shuhua Xu, Sep 27, 2015
37 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several recent papers illustrate the importance of migration and gene flow in molding the patterns of genetic variation observed in humans today. We place the varied demographic processes covered by these terms into a more general framework, and discuss some of the challenges facing attempts to reconstruct past human mobility and determine its influence on our genetic heritage. See research articles: and
    BMC Biology 07/2010; 8(1):98. DOI:10.1186/1741-7007-8-98 · 7.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The HUGO Pan-Asian SNP Consortium has recently released a genome-wide dataset, which consists of 1,719 DNA samples collected from 71 Asian populations. For studies of human population genetics such as genetic structure and migration history, this provided the most comprehensive large-scale survey of genetic variation to date in East and Southeast Asia. However, although considered in the analysis, close relatives were not clearly reported in the original paper. Here we performed a systematic analysis of genetic relationships among individuals from the Pan-Asian SNP (PASNP) database and identified 3 pairs of monozygotic twins or duplicate samples, 100 pairs of first-degree and 161 second-degree of relationships. Three standardized subsets with different levels of unrelated individuals were suggested here for future applications of the samples in most types of population-genetics studies (denoted by PASNP1716, PASNP1640 and PASNP1583 respectively) based on the relationships inferred in this study. In addition, we provided gender information for PASNP samples, which were not included in the original dataset, based on analysis of X chromosome data.
    PLoS ONE 12/2011; 6(12):e29502. DOI:10.1371/journal.pone.0029502 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Hmong Diaspora is one of the widest modern human migrations. Mainly localised in South-East Asia, the United States of America, and metropolitan France, a small community has also settled the Amazonian forest of French Guiana. We have biologically analysed 62 individuals of this unique Guianese population through three complementary genetic markers: mitochondrial DNA (HVS-I/II and coding region SNPs), Y-chromosome (SNPs and STRs), and the Gm allotypic system. All genetic systems showed a high conservation of the Asian gene pool (Asian ancestry: mtDNA=100.0%; NRY=99.1%; Gm=96.6%), without a trace of founder effect. When compared across various Asian populations, the highest correlations were observed with Hmong-Mien groups still living in South-East Asia (Fst<0.05; P-value<0.05). Despite a long history punctuated by exodus, the French Guianese Hmong have maintained their original genetic diversity.
    Comptes rendus biologies 10/2012; 335(10-11):698-707. DOI:10.1016/j.crvi.2012.10.003 · 0.98 Impact Factor
Show more