Activation of Human Bronchial Epithelial Cells by Inflammatory Cytokines IL-27 and TNF-alpha: Implications for Immunopathophysiology of Airway Inflammation

Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong.
Journal of Cellular Physiology (Impact Factor: 3.87). 01/2010; 223(3):788-97. DOI: 10.1002/jcp.22094
Source: PubMed

ABSTRACT Interleukin (IL)-27 is a member of IL-6/IL-12 family cytokines produced by antigen-presenting cells in immune responses. IL-27 can drive the commitment of naive T cells to a T helper type 1 (Th1) phenotype and inhibit inflammation in later phases of infection. Human bronchial epithelial cells have been shown to express IL-27 receptor complex. In this study, we investigated the in vitro effects of IL-27, alone or in combination with inflammatory cytokine tumor necrosis factor (TNF)-alpha on the pro-inflammatory activation of human primary bronchial epithelial cells and the underlying intracellular signaling mechanisms. IL-27 was found to enhance intercellular adhesion molecule 1 (ICAM-1) expression on the surface of human bronchial epithelial cells, and a synergistic effect was observed in the combined treatment of IL-27 and TNF-alpha on the expression of ICAM-1. Although IL-27 did not alter the basal IL-6 secretion from bronchial epithelial cells, it could significantly augment TNF-alpha-induced IL-6 release. These synergistic effects on the up-regulation of ICAM-1 and IL-6 were partially due to the elevated expression of TNF-alpha receptor (p55TNFR) induced by IL-27. Further investigations showed that the elevation of ICAM-1 and IL-6 in human bronchial epithelial cells stimulated by IL-27 and TNF-alpha was differentially regulated by phosphatidylinositol 3-OH kinase (PI3K)-Akt, p38 mitogen-activated protein kinase, and nuclear factor-kappaB pathways. Our results therefore provide a new insight into the molecular mechanisms involved in airway inflammation.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The mechanisms underlying the increased susceptibility of the elderly to respiratory infections are not well understood. The crosstalk between the dendritic cells (DCs) and epithelial cells is essential in maintaining tolerance as well as in generating immunity in the respiratory mucosa. DCs from aged subjects display an enhanced basal level of activation, which can affect the function of epithelial cells. Our results suggest that this is indeed the scenario as exposure of primary bronchial epithelial cells (PBECs) to supernatants from unstimulated DCs of aged subjects resulted in activation of PBECs. The expression of CCL20, CCL26, CXCL10, mucin, and CD54 was significantly increased in the PBECs exposed to aged DC supernatants, but not to young DC supernatants. Furthermore, aged DC supernatants also enhanced the permeability of the PBEC barrier. We also found that DCs from aged subjects spontaneously secreted increased levels of pro-inflammatory mediators, interleukin-6, tumor necrosis factor (TNF)-α, and metalloproteinase A disintegrin family of metalloproteinase 10, which can affect the functions of PBECs. Finally, we demonstrated that TNF-α, present in the supernatant of DCs from aged subjects, was the primary pro-inflammatory mediator that affected PBEC functions. Thus, age-associated alterations in DC-epithelial interactions contribute to chronic airway inflammation in the elderly, increasing their susceptibility to respiratory diseases.Mucosal Immunology advance online publication, 23 April 2014; doi:10.1038/mi.2014.28.
    Mucosal Immunology 04/2014; 7(6). DOI:10.1038/mi.2014.28 · 7.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Severe asthma (SA) can involve both innate and type 2 cytokine–associated adaptive immunity. Although IL-27 has been reported to potentiate TH1 responses (including the chemokine CXCL9) and suppress TH2 responses, its function in asthmatic patients is unknown. Objective We sought to evaluate IL-27 expression in human asthma alone and in combination with type 2 immunity to determine the relationship to disease severity and CXCL9 expression. We also sought to model these interactions in vitro in human bronchial epithelial cells. Methods Bronchoalveolar lavage cells from 87 participants were evaluated for IL-27 mRNA and protein alone and in association with epithelial CCL26 (a marker of type 2 activation) in relation to asthma severity and CXCL9 mRNA. Human bronchial epithelial cells cultured at the air-liquid interface and stimulated with IL-27 (1-100 ng/mL) with or without IL-13 (1 ng/mL) were evaluated for CXCL9 expression by using quantitative real-time PCR and ELISA. Phosphorylated and total signal transducer and activator of transcription (STAT) 1/3 were detected by means of Western blotting. Small interfering RNA knockdown of STAT1 or STAT3 was performed. Results Bronchoalveolar lavage cell IL-27 mRNA and protein levels were increased in asthmatic patients. Patients with evidence for type 2 pathway activation had higher IL-27 expression (P = .02). Combined IL-27 and CCL26 expression associated with more SA and higher CXCL9 expression (P = .004 and P = .007 respectively), whereas IL-27 alone was associated with milder disease. In vitro IL-13 augmented IL-27–induced CXCL9 expression, which appeared to be due to augmented STAT1 activation and reduced STAT3 activation. Conclusions IL-27, in combination with a type 2/CCL26 signature, identifies a more SA phenotype, perhaps through combined effects of IL-27 and IL-13 on STAT signaling. Understanding these interactions could lead to new targets for asthma therapy.
    Journal of Allergy and Clinical Immunology 10/2014; 135(2). DOI:10.1016/j.jaci.2014.08.023 · 11.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Postinfluenza pneumococcal pneumonia is a common cause of death in humans. However, the role of IL-27 in the pathogenesis of secondary pneumococcal pneumonia after influenza is unknown. We now report that influenza infection induced pulmonary IL-27 production in a type I IFN-α/β receptor (IFNAR) signalling-dependent manner, which sensitized mice to secondary pneumococcal infection downstream of IFNAR pathway. Mice deficient in IL-27 receptor were resistant to secondary pneumococcal infection and generated more IL-17A-producing γδ T cells but not αβ T cells, thereby leading to enhanced neutrophil response during the early phase of host defence. IL-27 treatment could suppress the development of IL-17A-producing γδ T cells activated by Streptococcus pneumoniae and dendritic cells. This suppressive activity of IL-27 on γδ T cells was dependent on transcription factor STAT1. Finally, neutralization of IL-27 or administration of IL-17A restored the role of γδ T cells in combating secondary pneumococcal infection. Our study defines what we believe to be a novel role of IL-27 in impairing host innate immunity against pneumococcal infection.
    EMBO Molecular Medicine 01/2014; 6(1):120-40. DOI:10.1002/emmm.201302890 · 8.25 Impact Factor