Article

Compressed collagen gel as the scaffold for skin engineering.

Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, Shanghai, 200011, People's Republic of China.
Biomedical Microdevices (Impact Factor: 2.72). 03/2010; 12(4):627-35. DOI: 10.1007/s10544-010-9415-4
Source: PubMed

ABSTRACT Collagen gel scaffolds can potentially be utilized as cell seeded systems for skin tissue engineering. However, its dramatic contraction after being mixed with cells and its mechanical weakness are the drawbacks for its application to skin engineering. In this study, a compressed collagen gel scaffold was fabricated through the rapid expulsion of liquid from reconstituted gels by the application of 'plastic compression'(PC) technique. Both compressed and uncompressed gels were characterized with their gel contraction rate, morphology, the viability of seeded cells, their mechanical properties and the feasibility as a scaffold for constructing tissue-engineered skin. The results showed that the compression could significantly reduce the contraction of the collagen gel and improve its mechanical property. In addition, seeded dermal fibroblasts survived well in the compressed gel and seeded epidermal cells gradually developed into a stratified epidermal layer, and thus formed tissue engineered skin. This study reveals the potential of using compressed collagen gel as a scaffold for skin engineering.

1 Bookmark
 · 
106 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Three dimensional (3D) tissue models of the human skin are probably the most developed and understood in vitro engineered constructs. The motivation to accomplish organotypic structures was driven by the clinics to enable transplantation of in vitro grown tissue substitutes and by the cosmetics industry as alternative test substrates in order to replace animal models. Today a huge variety of 3D human skin models exist, covering a multitude of scientific and/or technical demands. This review summarizes and discusses different approaches of skin model development and sets them into the context of drug development. Although human skin models have become indispensable for the cosmetics industry, they have not yet started their triumphal procession in pharmaceutical research and development. For drug development these tissue models may be of particular interest for a) systemically acting drugs applied on the skin, and b) drugs acting at the site of application in the case of skin diseases or disorders. Although quite a broad spectrum of models covering different aspects of the skin as a biologically acting surface exists, these are most often single stand-alone approaches. In order to enable the comprehensive application into drug development processes, the approaches have to be synchronized to allow a cross-over comparison. Besides the development of biological relevant models, other issues are not less important in the context of drug development: standardized production procedures, process automation, establishment of significant analytical methods, and data correlation. For the successful, routine use of engineered human skin models in drug development, major requirements were defined. If these requirements can be accomplished in the next few years, human organotypic skin models will become indispensable for drug development too.
    Advanced drug delivery reviews 12/2013; · 11.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of collagen scaffold in tissue engineering is on the rise, as modifications to mechanical properties are becoming more effective in strengthening constructs whilst preserving the natural biocompatibility. The combined technique of plastic compression and cross-linking is known to increase the mechanical strength of the collagen construct. Here, a modified protocol for engineering these collagen constructs is used to bring together a plastic compression method, combined with controlled photochemical crosslinking using riboflavin as a photoinitiator. In order to ascertain the effects of the photochemical crosslinking approach and the impact of the crosslinks created upon the properties of the engineered collagen constructs, the constructs were characterized both at the macroscale and at the fibrillar level. The resulting constructs were found to have a 2.5 fold increase in their Young's modulus, reaching a value of 650 ± 73 kPa when compared to non-crosslinked control collagen constructs. This value is not yet comparable to that of native tendon, but it proves that combining a crosslinking methodology to collagen tissue engineering may offer a new approach to create stronger, biomimetic constructs. A notable outcome of crosslinking collagen with riboflavin is the collagen's greater affinity for water; it was demonstrated that riboflavin crosslinked collagen retains water for a longer period of time compared to non-cross-linked control samples. The affinity of the cross-linked collagen to water also resulted in an increase of individual collagen fibrils' cross-sectional area as function of the crosslinking. These changes in water affinity and fibril morphology induced by the process of crosslinking could indicate that the crosslinked chains created during the photochemical crosslinking process may act as intermolecular hydrophilic nanosprings. These intermolecular nanosprings would be responsible for a change in the fibril morphology to accommodate variable volume of water within the fibril.
    Journal of Materials Science Materials in Medicine 09/2013; · 2.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The development of hydrogel-based biomaterials represents a promising approach to generating new strategies for tissue engineering and regenerative medicine. In order to develop more sophisticated cell-seeded hydrogel constructs, it is important to understand how cells mechanically interact with hydrogels. In this paper, we review the mechanisms by which cells remodel hydrogels, the influence that the hydrogel mechanical and structural properties have on cell behaviour and the role of mechanical stimulation in cell-seeded hydrogels. Cell-mediated remodelling of hydrogels is directed by several cellular processes, including adhesion, migration, contraction, degradation and extracellular matrix deposition. Variations in hydrogel stiffness, density, composition, orientation and viscoelastic characteristics all affect cell activity and phenotype. The application of mechanical force on cells encapsulated in hydrogels can also instigate changes in cell behaviour. By improving our understanding of cell-material mechano-interactions in hydrogels, this should enable a new generation of regenerative medical therapies to be developed.
    Interface focus: a theme supplement of Journal of the Royal Society interface 04/2014; 4(2):20130038. · 2.21 Impact Factor