Christina L. Ohland and Wallace K. MacNaughton

Department of Physiology and Pharmacology, Univ. of Calgary, 3330 Hospital Dr. NW, Calgary, AB, Canada T2N 4N1.
AJP Gastrointestinal and Liver Physiology (Impact Factor: 3.8). 03/2010; 298(6):G807-19. DOI: 10.1152/ajpgi.00243.2009
Source: PubMed


The intestinal tract is a diverse microenvironment where more than 500 species of bacteria thrive. A single layer of epithelium is all that separates these commensal microorganisms and pathogens from the underlying immune cells, and thus epithelial barrier function is a key component in the arsenal of defense mechanisms required to prevent infection and inflammation. The epithelial barrier consists of a dense mucous layer containing secretory IgA and antimicrobial peptides as well as dynamic junctional complexes that regulate permeability between cells. Probiotics are live microorganisms that confer benefit to the host and that have been suggested to ameliorate or prevent diseases including antibiotic-associated diarrhea, irritable bowel syndrome, and inflammatory bowel disease. Probiotics likely function through enhancement of barrier function, immunomodulation, and competitive adherence to the mucus and epithelium. This review summarizes the evidence about effects of the many available probiotics with an emphasis on intestinal barrier function and the mechanisms affected by probiotics.

Download full-text


Available from: Wallace MacNaughton, Jun 11, 2014
157 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The effect of lactic acid on the outer membrane permeability ofEscherichia coli O157:H7, Pseudomonas aeruginosa, and Salmonella enterica serovar Typhimurium was studied utilizing a fluorescent-probe uptake assay and sensitization to bacteriolysis. For control purposes, similar assays were performed with EDTA (a permeabilizer acting by chelation) and with hydrochloric acid, the latter at pH values corresponding to those yielded by lactic acid, and also in the presence of KCN. Already 5 mM (pH 4.0) lactic acid caused prominent permeabilization in each species, the effect in the fluorescence assay being stronger than that of EDTA or HCl. Similar results were obtained in the presence of KCN, except for P. aeruginosa, for which an increase in the effect of HCl was observed in the presence of KCN. The permeabilization by lactic and hydrochloric acid was partly abolished by MgCl2. Lactic acid sensitized E. coli and serovar Typhimurium to the lytic action of sodium dodecyl sulfate (SDS) more efficiently than did HCl, whereas both acids sensitized P. aeruginosa to SDS and to Triton X-100. P. aeruginosawas effectively sensitized to lysozyme by lactic acid and by HCl. Considerable proportions of lipopolysaccharide were liberated from serovar Typhimurium by these acids; analysis of liberated material by electrophoresis and by fatty acid analysis showed that lactic acid was more active than EDTA or HCl in liberating lipopolysaccharide from the outer membrane. Thus, lactic acid, in addition to its antimicrobial property due to the lowering of the pH, also functions as a permeabilizer of the gram-negative bacterial outer membrane and may act as a potentiator of the effects of other antimicrobial substances.
    Applied and Environmental Microbiology 06/2000; 66(5):2001-5. DOI:10.1128/AEM.66.5.2001-2005.2000 · 3.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Necrotizing Enterocolitis (NEC) is a serious disease that affects the bowel of premature infants in the first few weeks of life. Although the cause of NEC is not entirely known, milk feeding and bacterial growth play a role. Probiotics (dietary supplements containing potentially beneficial bacteria or yeast) have been used to prevent NEC. Our review of studies found that the use of probiotics reduces the occurrence of NEC and death in premature infants born less than 1500 grams. There is insufficient data with regard to the benefits and potential adverse effects in the most at risk infants less than 1000 grams at birth.
    Cochrane database of systematic reviews (Online) 01/2008; 23(1):CD005496. DOI:10.1002/14651858.CD005496.pub2 · 6.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Occludin is an integral membrane phosphoprotein specifically associated with tight junctions, contributing to the structure and function of this intercellular seal. Occludin function is thought to be regulated by phosphorylation, but no information is available on the molecular pathways involved. In the present study, the involvement of the protein kinase C pathway in the regulation of the phosphorylation and cellular distribution of occludin has been investigated. Phorbol 12-myristate 13-acetate and 1,2-dioctanoylglycerol induced the rapid phosphorylation of occludin in Madin-Darby canine kidney cells cultured in low extracellular calcium medium with a concomitant translocation of occludin to the regions of cell-cell contact. The extent of occludin phosphorylation as well as its incorporation into tight junctions induced by protein kinase C activators or calcium switch were markedly decreased by the protein kinase C inhibitor GF-109203X. In addition, in vitroexperiments showed that the recombinant COOH-terminal domain of murine occludin could be phosphorylated by purified protein kinase C. Ser338 of occludin was identified as an in vitro protein kinase C phosphorylation site using peptide mass fingerprint analysis and electrospray ionization tandem mass spectroscopy. These findings indicate that protein kinase C is involved in the regulation of occludin function at tight junctions.
    Journal of Biological Chemistry 11/2001; 276(42):38480-6. DOI:10.1074/jbc.M104923200 · 4.57 Impact Factor
Show more