Peroxisome proliferator-activated receptor-gamma inhibits transformed growth of non-small cell lung cancer cells through selective suppression of Snail.

Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado-Denver, 12700 E 19th Ave., Aurora, CO 80045, USA.
Neoplasia (New York, N.Y.) (Impact Factor: 5.48). 03/2010; 12(3):224-34.
Source: PubMed

ABSTRACT Work from our laboratory and others has demonstrated that activation of the nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARgamma) inhibits transformed growth of non-small cell lung cancer (NSCLC) cell lines in vitro and in vivo. We have demonstrated that activation of PPARgamma promotes epithelial differentiation of NSCLC by increasing expression of E-cadherin, as well as inhibiting expression of COX-2 and nuclear factor-kappaB. The Snail family of transcription factors, which includes Snail (Snail1), Slug (Snail2), and ZEB1, is an important regulator of epithelial-mesenchymal transition, as well as cell survival. The goal of this study was to determine whether the biological responses to rosiglitazone, a member of the thiazolidinedione family of PPARgamma activators, are mediated through the regulation of Snail family members. Our results indicate that, in two independent NSCLC cell lines, rosiglitazone specifically decreased expression of Snail, with no significant effect on either Slug or ZEB1. Suppression of Snail using short hairpin RNA silencing mimicked the effects of PPARgamma activation, in inhibiting anchorage-independent growth, promoting acinar formation in three-dimensional culture, and inhibiting invasiveness. This was associated with the increased expression of E-cadherin and decreased expression of COX-2 and matrix metaloproteinases. Conversely, overexpression of Snail blocked the biological responses to rosiglitazone, increasing anchorage-independent growth, invasiveness, and promoting epithelial-mesenchymal transition. The suppression of Snail expression by rosiglitazone seemed to be independent of GSK-3 signaling but was rather mediated through suppression of extracellular signal-regulated kinase activity. These findings suggest that selective regulation of Snail may be critical in mediating the antitumorigenic effects of PPARgamma activators.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It remains unclear whether patients with non-small-cell lung cancer (NSCLC) develop brain metastasis during or after standard therapy. We attempted to identify biological markers that predict brain metastasis, and investigated how to modulate expression of such markers. A case-control study of patients who were newly diagnosed with NSCLC and who had developed brain metastasis during follow-up was conducted between 2004 and 2009. These patients were compared with a control group of patients who had NSCLC but no evidence of brain metastasis. Immunohistochemical analysis of expression of Ki-67, p53, Bcl-2, Bax, vascular endothelial growth factor, epidermal growth factor receptor, caspase-3, and E-cadherin was conducted. The methylation status of the genes for O(6)-methylguanine-DNA-methyltransferase, tissue inhibitor of matrix metalloproteinase (TIMP)-2, TIMP-3, and death-associated protein-kinase was also determined, by use of a methylation-specific polymerase chain reaction. A significantly increased risk of developing brain metastasis was associated with the presence of primary tumors with low E-cadherin expression in patients with NSCLC. We also investigated the effects of pioglitazone, a peroxisome proliferator-activated receptor γ-activating drug, in tumor-bearing mouse models. We found that E-cadherin expression was proportional to pioglitazone exposure time. Interestingly, pioglitazone pretreatment before cancer cell inoculation prevented loss of E-cadherin expression and reduced expression of MMP9 and fibronectin, compared with the control group. E-cadherin expression could be a predictor of brain metastasis in patients with NSCLC. Preventive treatment with pioglitazone may be useful for modulating E-cadherin expression.
    Journal of Neuro-Oncology 05/2012; 109(2):219-27. · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glioblastoma is the most common type of astrocytoma in the brain. Due to its high invasiveness and chemoresistance, patients with advanced stage of glioblastoma have a poor prognosis. SNAI1, an important regulator of epithelial-mesenchymal transition, has been associated with metastasis in various carcinoma cells. However, its roles in glioblastoma cells have been poorly characterized. To examine roles of SNAI1 in glioblastoma cells, we knockdowned SNAI1 expression using siRNA. SNAI1 siRNA increased the expression level of E-cadherin and decreased that of vimentin. In the water-soluble tetrazolium salt (WST-1) assay, SNAI1 siRNA inhibited the proliferation of U87-MG and GBM05 glioblastoma cells. Moreover, in the Boyden chamber assay and Matrigel invasion assay, SNAI1 siRNA inhibited serum-induced migration and invasion of glioblastoma cells. These results suggested that SNAI1 is involved in the proliferation and migration of glioblastoma cells.
    Cellular and Molecular Neurobiology 01/2011; 31(3):489-96. · 2.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Peroxisome proliferator-activated receptor-γ (PPARγ) is a member of the nuclear receptor superfamily of ligand-activated transcription factors that plays an important role in the control of gene expression linked to a variety of physiological processes, including cancer. Ligands for PPARγ include naturally occurring fatty acids and the thiazolidinedione class of antidiabetic drugs. Activation of PPARγ in a variety of cancer cells leads to inhibition of growth, decreased invasiveness, reduced production of proinflammatory cytokines, and promotion of a more differentiated phenotype. However, systemic activation of PPARγ has been reported to be protumorigenic in some in vitro systems and in vivo models. Here, we review the available data that implicate PPARγ in lung carcinogenesis and highlight the challenges of targeting PPARγ in lung cancer treatments.
    PPAR Research 01/2012; 2012:362085. · 2.69 Impact Factor


Available from