Article

Structural and cellular features in metaphyseal and diaphyseal periosteum of osteoporotic rats.

Bone Tissue Engineering, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove Campus, Brisbane, Qld 4059, Australia.
Journal of molecular histology (Impact Factor: 1.75). 03/2010; 41(1):51-60. DOI: 10.1007/s10735-010-9261-y
Source: PubMed

ABSTRACT Despite the important physiological role of periosteum in the pathogenesis and treatment of osteoporosis, little is known about the structural and cellular characteristics of periosteum in osteoporosis. To study the structural and cellular differences in both diaphyseal and metaphyseal periosteum of osteoporotic rats, samples from the right femur of osteoporotic and normal female Lewis rats were collected and tissue sections were stained with hematoxylin and eosin, antibodies or staining kit against tartrate resistant acid phosphatase (TRAP), alkaline phosphatase (ALP), vascular endothelial growth factor (VEGF), von Willebrand (vWF), tyrosine hydroxylase (TH) and calcitonin gene-related peptide (CGRP). The results showed that the osteoporotic rats had much thicker and more cellular cambial layer of metaphyseal periosteum compared with other periosteal areas and normal rats (P < 0.001). The number of TRAP(+) osteoclasts in bone resorption pits, VEGF(+) cells and the degree of vascularization were found to be greater in the cambial layer of metaphyseal periosteum of osteoporotic rats (P < 0.05), while no significant difference was detected in the number of ALP(+) cells between the two groups. Sympathetic nerve fibers identified by TH staining were predominantly located in the cambial layer of metaphyseal periosteum of osteoporotic rats. No obvious difference in the expression of CGRP between the two groups was found. In conclusion, periosteum may play an important role in the cortical bone resorption in osteoporotic rats and this pathological process may be regulated by the sympathetic nervous system.

0 Bookmarks
 · 
113 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The skeleton is no longer seen as a static, isolated, and mostly structural organ. Over the last two decades, a more complete picture of the multiple functions of the skeleton has emerged, and its interactions with a growing number of apparently unrelated organs have become evident. The skeleton not only reacts to mechanical loading and inflammatory, hormonal, and mineral challenges, but also acts of its own accord by secreting factors controlling the function of other tissues, including the kidney and possibly the pancreas and gonads. It is thus becoming widely recognized that it is by nature an endocrine organ, in addition to a structural organ and site of mineral storage and hematopoiesis. Consequently and by definition, bone homeostasis must be tightly regulated and integrated with the biology of other organs to maintain whole body homeostasis, and data uncovering the involvement of the central nervous system (CNS) in the control of bone remodeling support this concept. The sympathetic nervous system (SNS) represents one of the main links between the CNS and the skeleton, based on a number of anatomic, pharmacologic, and genetic studies focused on β-adrenergic receptor (βAR) signaling in bone cells. The goal of this report was to review the data supporting the role of the SNS and βAR signaling in the regulation of skeletal homeostasis.
    Calcified Tissue International 06/2013; · 2.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vascular endothelial growth factor (VEGF) is an endothelial cell survival factor and is required for effective coupling of angiogenesis and osteogenesis. Although central to bone homeostasis, repair and the pathobiology that affect these processes, the precise mechanisms coupling endothelial cell function within bone formation and remodelling remain unclarified. This review will (i) focus on the potential directionality of VEGF signalling in adult bone by identifying the predominant source of VEGF within the bone microenvironment, (ii) will summarize current VEGF receptor expression studies by bone cells and (iii) will provide evidence for a role for VEGF signalling during postnatal repair and osteoporosis. A means of understanding the directionality of VEGF signalling in adult bone would allow us to most effectively target angiogenic pathways in diseases characterized by changes in bone remodelling rates and enhance bone repair when compromised. Copyright © 2012 John Wiley & Sons, Ltd.
    Cell Biochemistry and Function 11/2012; · 1.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose. The aim of the present study was to characterize the cell of the human periosteum using immunohistological and molecular methods. Methods. Phenotypic properties and the distribution of the cells within the different layers were investigated with immunohistochemical staining techniques and RT-PCR, focussing on markers for stromal stem cells, osteoblasts, osteoclasts and immune cells. Results. Immunohistochemical results revealed that all stained cells were located in the cambium layer and that most cells were positive for vimentin. The majority of cells consisted of stromal stem cells and osteoblastic precursor cells. The density increased towards the deeper layers of the cambium. In addition, cells positive for markers of the osteoblast, chondrocyte, and osteoclast lineages were found. Interestingly, there were MHC class II-expressing immune cells suggesting the presence of dendritic cells. Using lineage-specific primer pairs RT-PCR confirmed the immunofluorescence microscopy results, supporting that human periosteum serves as a reservoir of stromal stem cells, as well as cells of the osteoblastic, and the chondroblastic lineage, osteoclasts, and dendritic cells. Conclusion. Our work elucidates the role of periosteum as a source of cells with a high regenerative capacity. Undifferentiated stromal stem cells as well as osteoblastic precursor cells are dominating in the cambium layer. A new outlook is given towards an immune response coming from the periosteum as MHC II positive immune cells were detected.
    The Scientific World Journal 01/2013; 2013:341078. · 1.73 Impact Factor

Full-text (2 Sources)

View
22 Downloads
Available from
May 27, 2014