Article

Cortical neural precursors inhibit their own differentiation via N-cadherin maintenance of beta-catenin signaling.

Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
Developmental Cell (Impact Factor: 12.86). 03/2010; 18(3):472-9. DOI: 10.1016/j.devcel.2009.12.025
Source: PubMed

ABSTRACT Little is known about the architecture of cellular microenvironments that support stem and precursor cells during tissue development. Although adult stem cell niches are organized by specialized supporting cells, in the developing cerebral cortex, neural stem/precursor cells reside in a neurogenic niche lacking distinct supporting cells. Here, we find that neural precursors themselves comprise the niche and regulate their own development. Precursor-precursor contact regulates beta-catenin signaling and cell fate. In vivo knockdown of N-cadherin reduces beta-catenin signaling, migration from the niche, and neuronal differentiation in vivo. N-cadherin engagement activates beta-catenin signaling via Akt, suggesting a mechanism through which cells in tissues can regulate their development. These results suggest that neural precursor cell interactions can generate a self-supportive niche to regulate their own number.

0 Bookmarks
 · 
105 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: During early development Wnt signalling has a key role in patterning the prospective nervous system by regulation of cell fate specification, cell polarity and cell migration. Wnt also coordinates the formation of neural circuits on multiple levels such as transcription, cell cycle and asymmetric cell division. Here we review the latest findings addressing the role of canonical Wnt/β-catenin signalling during developmental and adult neurogenesis; exploring the connection of in vivo data to the recently described Wnt-driven asymmetric stem cell division in vitro. Understanding how Wnt orchestrates these processes in a spatiotemporal manner during corticogenesis will be of crucial importance for the development of new strategies to regenerate neuronal circuits. © 2014 Wiley Periodicals, Inc. Develop Neurobiol, 2014.
    Developmental Neurobiology 02/2014; · 4.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protocadherin 11 X-linked (Pcdh11x) protein is a member of the cadherin superfamily with established roles in cell adhesion. Previous studies have shown the molecular biology and possible relevance of Pcdh11x with neurological disease in humans. However, little is known about the neurophysiological function of Pcdh11x in neural development. Here, we verified that Pcdh11x is primarily expressed in various brain areas including the cortex, hippocampus, and ventricular/subventricular zone (VZ/SVZ) at different embryonic stages. Furthermore, both in vitro and in vivo experiments showed that Pcdh11x decreased neural differentiation but increased the neural proliferation. These observations demonstrate a crucial function for Pcdh11x during the development of central nervous system.
    Journal of Molecular Neuroscience 03/2014; · 2.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since their discovery in the early 1990s, microRNAs have emerged as key components of the post-transcriptional regulation of gene expression. MicroRNAs occur in the plant and animal kingdoms, with the numbers of microRNAs encoded in the genome increasing together with the evolutionary expansion of the phyla. By base-pairing with complementary sequences usually located within the 3' untranslated region, microRNAs target mRNAs for degradation, destabilization and/or translational inhibition. Because one microRNA can have many, if not hundreds, of target mRNAs and because one mRNA can, in turn, be targeted by many microRNAs, these small single-stranded RNAs can exert extensive pleiotropic functions during the development, adulthood and ageing of an organism. Specific functions of an increasing number of microRNAs have been described for the invertebrate and vertebrate nervous systems. Among these, the miR-8/miR-200 microRNA family has recently emerged as an important regulator of neurogenesis and gliogenesis and of adult neural homeostasis in the central nervous system of fruit flies, zebrafish and rodents. This highly conserved microRNA family consists of a single ortholog in the fruit fly (miR-8) and five members in vertebrates (miR-200a, miR-200b, miR-200c, miR-141 and miR-429). Here, we review our current knowledge about the functions of the miR-8/miR-200 microRNA family during invertebrate and vertebrate neural development and adult homeostasis and, in particular, about their role in the regulation of neural stem/progenitor cell proliferation, cell cycle exit, transition to a neural precursor/neuroblast state, neuronal differentiation and cell survival and during glial cell growth and differentiation into mature oligodendrocytes.
    Cell and Tissue Research 05/2014; · 3.68 Impact Factor

Full-text

View
49 Downloads
Available from
May 22, 2014