Article

Mechanisms of carbapenem resistance among a collection of Enterobacteriaceae clinical isolates in a Texas city.

Department of Medicine, San Antonio Military Medical Center, Fort Sam Houston, Texas 78234, USA.
Diagnostic microbiology and infectious disease (Impact Factor: 2.45). 04/2010; 66(4):445-8. DOI: 10.1016/j.diagmicrobio.2009.11.013
Source: PubMed

ABSTRACT Fourteen Enterobacteriaceae isolates with ertapenem MIC >2 mg/mL were analyzed to identify mechanisms of resistance. All isolates produced extended-spectrum beta-lactamase or AmpC beta-lactamase with variable, but decreased, expression of outer membrane proteins. One Enterobacter cloacae produced derepressed AmpC beta-lactamase, 1 Escherichia coli expressed plasmid-mediated AmpC beta-lactamase, and 1 E. cloacae produced a carbapenemase.

0 Bookmarks
 · 
102 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the in vitro susceptibilities to various carbapenems amongst clinical Gram-negative bacteria isolated from patients in intensive care units of ten major teaching hospitals in Taiwan in 2009, a survey was conducted to determine the minimum inhibitory concentrations (MICs) of ertapenem, imipenem, meropenem and doripenem against isolates of Enterobacteriaceae (n=594), Pseudomonas aeruginosa (n=185), Acinetobacter baumannii (n=192) and Burkholderia cepacia (n=23) using the agar dilution method. Susceptibilities were determined according to 2009, 2011 and 2012 MIC breakpoints recommended by the CLSI as well as 2012 MIC breakpoints recommended by EUCAST. Based on CLSI 2012 criteria, the ertapenem susceptible rate was 93%, 81%, 68% and 92% for Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae and Serratia marcescens, respectively. All Proteus mirabilis and Morganella morganii isolates were susceptible to ertapenem; however, 64% of P. mirabilis and all M. morganii isolates were non-susceptible to imipenem. Meropenem and doripenem had better activities than imipenem against ertapenem-non-susceptible Enterobacteriaceae isolates. E. coli, K. pneumoniae and E. cloacae with ertapenem MICs≥4mg/L were synchronously not susceptible to imipenem, meropenem and doripenem. Imipenem susceptibility was 65% and 29% for P. aeruginosa and A. baumannii, respectively. Additionally, P. aeruginosa and A. baumannii isolates with imipenem MICs≥8mg/L were also not susceptible to meropenem and doripenem. These data provide a better understanding of choosing appropriate carbapenem agents to treat infections caused by ertapenem-non-susceptible Enterobacteriaceae as well as P. aeruginosa and A. baumannii isolates with imipenem MICs≥4mg/L.
    International journal of antimicrobial agents 03/2013; · 3.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The emergence of Klebsiella pneumoniae carbapenemases (KPCs) producing bacteria has become a significant global public health challenge while the optimal treatment remains undefined. We performed a systematic review of published studies and reports of treatment outcomes of KPC infections using MEDLINE (2001–2011). Articles or cases were excluded if one of the following was fulfilled: no individual patient data provided, no treatment regimen specified, no treatment outcome specified, report of colonization, or greater than three antibiotics were used to treat the KPC infection. Data extracted included patient demographics, site of infection, organism, KPC subtype, antimicrobial therapy directed at KPC-infection, and treatment outcome. Statistical analysis was performed in an exploratory manner. A total of 38 articles comprising 105 cases were included in the analysis. The majority of infections were due to K. pneumoniae (89%). The most common site of infection was blood (52%), followed by respiratory (30%), and urine (10%). Forty-nine (47%) cases received monotherapy and 56 (53%) cases received combination therapy directed at the KPC-infection. Significantly more treatment failures were seen in cases that received monotherapy compared to cases who received combination therapy (49% vs 25%; p= 0.01). Respiratory infections were associated with higher rates of treatment failure with monotherapy compared to combination therapy (67% vs 29% p= 0.03). Polymyxin monotherapy was associated with higher treatment failure rates compared to polymyxin-based combination therapy (73% vs 29%; p= 0.02); similarly, higher treatment failure rates were seen with carbapenem monotherapy compared to carbapenem-based combination therapy (60% vs 26%; p= 0.03). Overall treatment failure rates were not significantly different in the three most common antibiotic-class combinations: polymyxin plus carbapenem, polymyxin plus tigecycline, polymyxin plus aminoglycoside (30%, 29%, and 25% respectively; p=0.6). In conclusion, combination therapy is recommended for the treatment of KPC infections; however, which combination of antimicrobial agents needs to be established in future prospective clinical trials.
    Annals of Clinical Microbiology and Antimicrobials 01/2012; 11(1). · 1.51 Impact Factor