Familial adenomatous polyposis: experience from a study of 1164 unrelated german polyposis patients.

Institute of Human Genetics, University of Bonn, Germany. .
Hereditary Cancer in Clinical Practice (Impact Factor: 1.71). 09/2005; 3(3):95-114.
Source: PubMed

ABSTRACT The autosomal-dominant precancerous condition familial adenomatous polyposis (FAP) is caused by germline mutations in the tumour suppressor gene APC. Consistent correlations between the site of mutations in the gene and clinical phenotype have been published for different patient groups. We report our experiences of APC mutation analysis and genotype-phenotype correlations in 1166 unrelated polyposis families and discuss our results in the light of literature data. We show that the mutation detection rates largely depend on the family history and clinical course of the disease. We present a list of 315 different point mutations and 37 large deletions detected in 634 of the 1166 index patients. Our results confirm previously published genotype-phenotype correlations with respect to the colorectal phenotype and extracolonic manifestations. However, 'exceptions to the rule' are also observed, and possible explanations for this are discussed. The discovery of autosomal-recessive MUTYH-associated polyposis (MAP) as a differential diagnosis to FAP implies that some results have to be reinterpreted and surveillance guidelines in the families have to be reevaluated.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The morbidity and mortality attributable to heritable and sporadic carcinomas of the colon are substantial and affect children and adults alike. Despite current colonoscopy screening recommendations colorectal adenocarcinoma (CRC) still accounts for almost 140000 cancer cases yearly. Familial adenomatous polyposis (FAP) is a colon cancer predisposition due to alterations in the adenomatous polyposis coli gene, which is mutated in most CRC. Since the beginning of the genomic era next-generation sequencing analyses of CRC continue to improve our understanding of the genetics of tumorigenesis and promise to expand our ability to identify and treat this disease. Advances in genome sequence analysis have facilitated the molecular diagnosis of individuals with FAP, which enables initiation of appropriate monitoring and timely intervention. Genome sequencing also has potential clinical impact for individuals with sporadic forms of CRC, providing means for molecular diagnosis of CRC tumor type, data guiding selection of tumor targeted therapies, and pharmacogenomic profiles specifying patient specific drug tolerances. There is even a potential role for genomic sequencing in surveillance for recurrence, and early detection, of CRC. We review strategies for diagnostic assessment and management of FAP and sporadic CRC in the current genomic era, with emphasis on the current, and potential for future, impact of genome sequencing on the clinical care of these conditions.
    World Journal of Clinical Oncology. 12/2014; 5(5):1036-1047.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: High-resolution melting (HRM) re-analysis of a polyposis patients cohort reveals previously undetected heterozygous and mosaic APC gene mutations Astrid A. Out • Ivonne J. H. M. van Minderhout • Nienke van der Stoep • Lysette S. R. van Bommel • Irma Kluijt • Cora Aalfs • Marsha Voorendt • Rolf H. A. M. Vossen • Maartje Nielsen • Hans F. A. Vasen • Hans Morreau • Peter Devilee • Carli M. J. Tops • Frederik J. Hes Abstract Familial adenomatous polyposis is most frequently caused by pathogenic variants in either the APC gene or the MUTYH gene. The detection rate of pathogenic variants depends on the severity of the phenotype and sensitivity of the screening method, including sensitivity for mosaic variants. For 171 patients with multiple colo-rectal polyps without previously detectable pathogenic variant, APC was reanalyzed in leukocyte DNA by one uniform technique: high-resolution melting (HRM) analysis. Serial dilution of heterozygous DNA resulted in a lowest detectable allelic fraction of 6 % for the majority of variants. HRM analysis and subsequent sequencing detected pathogenic fully heterozygous APC variants in 10 (6 %) of the patients and pathogenic mosaic variants in 2 (1 %). All these variants were previously missed by various conventional scanning methods. In parallel, HRM APC scanning was applied to DNA isolated from polyp tissue of two additional patients with apparently sporadic polyposis and without detectable pathogenic APC variant in leuko-cyte DNA. In both patients a pathogenic mosaic APC variant was present in multiple polyps. The detection of pathogenic APC variants in 7 % of the patients, including mosaics, illustrates the usefulness of a complete APC gene reanalysis of previously tested patients, by a supplementary scanning method. HRM is a sensitive and fast pre-screening method for reliable detection of heterozygous and mosaic variants, which can be applied to leukocyte and polyp derived DNA.
    Familial Cancer 01/2015; · 1.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In a number of families with colorectal adenomatous polyposis or suspected Lynch syndrome / HNPCC, no germline alteration in the APC, MUTYH, or mismatch repair (MMR) genes are found. Missense mutations in the polymerase genes POLE and POLD1 have recently been identified as rare cause of multiple colorectal adenomas and carcinomas, a condition termed Polymerase proofreading-associated polyposis (PPAP). The aim of the present study was to evaluate the clinical relevance and phenotypic spectrum of polymerase germline mutations. Therefore targeted sequencing of the polymerase genes POLD1, POLD2, POLD3, POLD4, POLE, POLE2, POLE3, and POLE4 was performed in 266 unrelated patients with polyposis or fulfilled Amsterdam criteria. The POLE mutation c.1270C>G;p.Leu424Val was detected in four unrelated patients. The mutation was present in 1.5% (4/266) of all patients, 4% (3/77) of all familial cases, and 7% (2/30) of familial polyposis cases. The colorectal phenotype in 14 affected individuals ranged from typical adenomatous polyposis to a HNPCC phenotype, with high intrafamilial variability. Multiple colorectal carcinomas and duodenal adenomas were common, and one case of duodenal carcinoma was reported. Additionally, various extraintestinal lesions were evident. Nine further putative pathogenic variants were identified. The most promising was c.1306C>T;p.Pro436Ser in POLE. In conclusion, a PPAP was identified in a substantial number of polyposis and familial colorectal cancer patients. Screening for polymerase proofreading mutations should therefore be considered, particularly in unexplained familial cases. The present study broadens the phenotypic spectrum of PPAP to duodenal adenomas and carcinomas, and identified novel, potentially pathogenic variants in four polymerase genes. This article is protected by copyright. All rights reserved.
    International Journal of Cancer 12/2014; · 6.20 Impact Factor


Available from