Hypoxic cardiorespiratory reflexes in the facultative air-breathing fish jeju (Hoplerythrinus unitaeniatus): role of branchial O2 chemoreceptors.

Department of Physiological Sciences, Federal University of São Carlos, Via Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil.
Journal of Comparative Physiology B (Impact Factor: 2.02). 03/2010; 180(6):797-811. DOI: 10.1007/s00360-010-0461-2
Source: PubMed

ABSTRACT In one series of experiments, heart frequency (f (H)), blood pressure (P (a)), gill ventilation frequency (f ( R )), ventilation amplitude (V (AMP)) and total gill ventilation (V (TOT)) were measured in intact jeju (Hoplerythrinus unitaeniatus) and jeju with progressive denervation of the branchial branches of cranial nerves IX (glossopharyngeal) and X (vagus) without access to air. When these fish were submitted to graded hypoxia (water PO(2) approximately 140, normoxia to 17 mmHg, severe hypoxia), they increased f ( R ), V (AMP), V (TOT) and P (a) and decreased f (H). In a second series of experiments, air-breathing frequency (f (RA)), measured in fish with access to the surface, increased with graded hypoxia. In both series, bilateral denervation of all gill arches eliminated the responses to graded hypoxia. Based on the effects of internal (caudal vein, 150 microg NaCN in 0.2 mL saline) and external (buccal) injections of NaCN (500 microg NaCN in 1.0 mL water) on f (R), V (AMP), V (TOT), P (a) and f (H) we conclude that the O(2) receptors involved in eliciting changes in gill ventilation and associated cardiovascular responses are present on all gill arches and monitor the O(2) levels of both inspired water and blood perfusing the gills. We also conclude that air breathing arises solely from stimulation of branchial chemoreceptors and support the hypothesis that internal hypoxaemia is the primary drive to air breathing.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: The African catfish, Clarias gariepinus, possesses a pair of suprabranchial chambers located in the dorsal-posterior part of the branchial cavity having extensions from the upper parts of the second and fourth gill arches, forming the arborescent organs. This structure is an air-breathing organ (ABO) and allows aerial breathing (AB). We evaluated its cardiorespiratory responses to aquatic hypoxia. To determine the mode of air-breathing (obligate or accessory), fish had the respiratory frequency (f (R)) monitored and were subjected to normoxic water (PwO(2) = 140 mmHg) without becoming hyperactive for 30 h. During this period, all fish survived without displaying evidences of hyperactivity and maintained unchanged f (R), confirming that this species is a facultative air-breather. Its aquatic O(2) uptake ([Formula: see text]) was maintained constant down to a critical PO(2) (PcO(2)) of 60 mmHg, below which [Formula: see text] declined linearly with further reductions of inspired O(2) tension (PiO(2)). Just above the PcO(2) the ventilatory tidal volume (V (T)) increased significantly along with gill ventilation ([Formula: see text]), while f (R) changed little. Consequently, the water convection requirement [Formula: see text] increased steeply. This threshold applied to a cardiac response that included reflex bradycardia. AB was initiated at PiO(2) = 140 mmHg (normoxia) and air-breathing episodes increased linearly with more severe hypoxia, being significantly higher at PiO(2) tensions below the PcO(2). Air-breathing episodes were accompanied by bradycardia pre air-breath, to tachycardia post air-breath.
    Journal of Comparative Physiology B 04/2011; 181(7):905-16. · 2.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study examined the distribution and orientation of gill O2 chemoreceptors in Oreochromis niloticus and their role in cardiorespiratory responses to graded hypoxia. Intact fish, and a group with the first gill arch excised (operated), were submitted to graded hypoxia and their cardiorespiratory responses (oxygen uptake - V˙O2, breathing frequency - fR, ventilatory stroke volume - VT, gill ventilation - V˙G, O2 extraction from the ventilatory current - EO2, and heart rate - fH) were compared. Their responses to bolus injections of NaCN into the bloodstream (internal) or ventilatory water stream (external) were also determined. The V˙O2 of operated fish was significantly lower at the deepest levels of hypoxia. Neither reflex bradycardia nor ventilatory responses were completely abolished by bilateral excision of the first gill arch. EO2 of the operated group was consistently lower than the intact group. The responses to internal and external NaCN included transient decreases in fH and increases in fR and Vamp (ventilation amplitude). These cardiorespiratory responses were attenuated but not abolished in the operated group, indicating that chemoreceptors are not restricted to the first gill arch, and are sensitive to oxygen levels in both blood and water.
    Comparative biochemistry and physiology. Part A, Molecular & integrative physiology 05/2013; · 2.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the present study was to determine the roles that externally versus internally oriented CO(2)/H(+)-sensitive chemoreceptors might play in promoting cardiorespiratory responses to environmental hypercarbia in the air-breathing fish, Hoplerythrinus unitaeniatus (jeju). Fish were exposed to graded hypercarbia (1, 2.5, 5, 10 and 20% CO(2)) and also to graded levels of environmental acidosis (pH approximately 7.0, 6.0, 5.8, 5.6, 5.3 and 4.7) equal to the pH levels of the hypercarbic water to distinguish the relative roles of CO(2) versus H(+). We also injected boluses of CO(2)-equilibrated solutions (5, 10 and 20% CO(2)) and acid solutions equilibrated to the same pH as the CO(2) boluses into the caudal vein (internal) and buccal cavity (external) to distinguish between internal and external stimuli. The putative location of the chemoreceptors was determined by bilateral denervation of branches of cranial nerves IX (glossopharyngeal) and X (vagus) to the gills. The data indicate that the chemoreceptors eliciting bradycardia, hypertension and gill ventilatory responses (increased frequency and amplitude) to hypercarbia are exclusively branchial, externally oriented and respond specifically to changes in CO(2) and not H(+). Those involved in producing the cardiovascular responses appeared to be distributed across all gill arches while those involved in the gill ventilatory responses were located primarily on the first gill arch. Higher levels of aquatic CO(2) depressed gill ventilation and stimulated air breathing. The chemoreceptors involved in producing air breathing in response to hypercarbia also appeared to be branchial, distributed across all gill arches and responded specifically to changes in aquatic CO(2). This would suggest that chemoreceptor groups with different orientations (blood versus water) are involved in eliciting air-breathing responses to hypercarbia in jeju.
    Journal of Experimental Biology 08/2010; 213(Pt 16):2797-807. · 3.24 Impact Factor

Full-text (2 Sources)

Available from
Jun 5, 2014