A novel Wilms tumor 1 (WT1) target gene negatively regulates the WNT signaling pathway.

Genetics of Development and Disease Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 03/2010; 285(19):14585-93. DOI: 10.1074/jbc.M109.094334
Source: PubMed

ABSTRACT Mammalian kidney development requires the functions of the Wilms tumor gene WT1 and the WNT/beta-catenin signaling pathway. Recent studies have shown that WT1 negatively regulates WNT/beta-catenin signaling, but the molecular mechanisms by which WT1 inhibits WNT/beta-catenin signaling are not completely understood. In this study, we identified a gene, CXXC5, which we have renamed WID (WT1-induced Inhibitor of Dishevelled), as a novel WT1 transcriptional target that negatively regulates WNT/beta-catenin signaling. WT1 activates WID transcription through the upstream enhancer region. In the developing kidney, Wid and Wt1 are coexpressed in podocytes of maturing nephrons. Structure-function analysis demonstrated that WID interacts with Dishevelled via its C-terminal CXXC zinc finger and Dishevelled binding domains and potently inhibits WNT/beta-catenin signaling in vitro and in vivo. WID is evolutionarily conserved, and ablation of wid in zebrafish embryos with antisense morpholino oligonucleotides perturbs embryonic kidney development. Taken together, our results demonstrate that the WT1 negatively regulates WNT/beta-catenin pathway via its target gene WID and further suggest a role for WID in nephrogenesis.

  • [Show abstract] [Hide abstract]
    ABSTRACT: CXXC5 is a member of a small subset of proteins containing CXXC-type zinc-finger domain. Here, we show that CXXC5 is a transcription factor activating Flk-1, a receptor for vascular endothelial growth factor. CXXC5 and Flk-1 were accmulated in nucli and membrane of mouse embryonic stem cells (mESCs), respectively, during their endothelial differentiation. CXXC5 overexpression induced Flk-1 transcription in both endothelium-differentiated mESCs and human umbilical vein endothelial cells (HUVECs). In vitro DNA binding assay showed direct interaction of CXXC5 on the Flk-1 promoter region, and mutation on its DNA-binding motif abolished transcriptional activity. We showed that bone morphorgeneic protein 4 (BMP4) induced CXXC5 transcription in the cells, and inhibitors of BMP signaling suppressed the CXXC5 induction and the consequent Flk-1 induction by BMP4 treatment. CXXC5 knockdown resulted in suppression of BMP4-induced stress fiber formation (56.8±1.3% decrease, P<0.05) and migration (54.6±1.9% decrease, P<0.05) in HUVECs. The in vivo roles of CXXC5 in BMP-signaling-specific vascular development and angiogenesis were shown by specific defect of caudal vein plex vessel formation (57.9±11.8% decrease, P<0.05) in cxxc5 morpholino-injected zebrafish embryos and by supression of BMP4-induced angigogensis in subcutaneously injected Matrigel plugs in CXXC5(-/-) mice. Overall, CXXC5 is a transcriptional activator for Flk-1, mediating BMP signaling for differentiation and migration of endothelial cell and vessel formation.-Kim, H.-Y., Yang, D.-H., Shin, S.-W., Kim, M.-Y., Yoon, J.-H., Kim, S., Park, H.-C., Kang, D. W., Min, D., Hur, M.-W., Choi, K.-Y. CXXC5 is a transcriptional activator of Flk-1 and mediates bone morphogenic protein-induced endothelial cell differentiation and vessel formation.
    The FASEB Journal 10/2013; 28(2). DOI:10.1096/fj.13-236216 · 5.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Activating mutations in the Wnt signaling pathway account for the initiation of greater than 90% of all colorectal cancers and this pathway has been implicated in numerous other diseases. Therefore, identifying small molecule inhibitors of this pathway is of critical importance towards identifying clinically relevant drugs. Numerous screens have been employed to identify therapeutic reagents, but none have made it to advanced clinical trials, suggesting that traditional screening methods are ineffective at identifying clinically relevant targets. Here, we describe a novel in vivo screen to identify small molecule inhibitors of the Wnt pathway. Specifically, treatment of zebrafish embryos with LiCl inhibits GSK3 kinase function, resulting in hyperactivation of the signaling pathway and an eyeless phenotype at 1 day post fertilization. Using the small molecule XAV939, a known inhibitor of Wnt signaling, we rescued the LiCl induced eyeless phenotype, confirming efficacy of the screen. We next tested our assay with 400 known small molecule kinase inhibitors, none of which should inhibit Wnt signaling below the level of GSK3 based on their known targets. Accordingly, none of these small molecules rescued the eyeless phenotype, which demonstrates the stringency of the assay. However, several of these small molecule kinase inhibitors did generate a non-Wnt phenotype in accordance with the kinase they targeted. Therefore, combining the efficacy, sensitivity, and stringency of this preliminary screen, this model will provide an alternative to the traditional in vitro screen, generating potentially clinical relevant drugs in a rapid and cost-effective way.
    Experimental Biology and Medicine 01/2014; 239(2). DOI:10.1177/1535370213514322 · 2.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The WT1 (Wilms' tumour 1) gene encodes a zinc finger transcription factor and RNA-binding protein that direct the development of several organs and tissues. WT1 manifests both tumour suppressor and oncogenic activities, but the reasons behind these opposing functions are still not clear. As a transcriptional regulator, WT1 can either activate or repress numerous target genes resulting in disparate biological effects such as growth, differentiation and apoptosis. The complex nature of WT1 is exemplified by a plethora of isoforms, post-translational modifications and multiple binding partners. How WT1 achieves specificity to regulate a large number of target genes involved in diverse physiological processes is the focus of the present review. We discuss the wealth of the growing molecular information that defines our current understanding of the versatility and utility of WT1 as a master regulator of organ development, a tumour suppressor and an oncogene.
    Biochemical Journal 07/2014; 461(1):15-32. DOI:10.1042/BJ20131587 · 4.78 Impact Factor


Available from
May 27, 2014