B Cells and Platelets Harbor Prion Infectivity in the Blood of Deer Infected with Chronic Wasting Disease

Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
Journal of Virology (Impact Factor: 4.44). 03/2010; 84(10):5097-107. DOI: 10.1128/JVI.02169-09
Source: PubMed


Substantial evidence for prion transmission via blood transfusion exists for many transmissible spongiform encephalopathy (TSE) diseases. Determining which cell phenotype(s) is responsible for trafficking infectivity has important implications for our understanding of the dissemination of prions, as well as their detection and elimination from blood products. We used bioassay studies of native white-tailed deer and transgenic cervidized mice to determine (i) if chronic wasting disease (CWD) blood infectivity is associated with the cellular versus the cell-free/plasma fraction of blood and (ii) in particular if B-cell (MAb 2-104(+)), platelet (CD41/61(+)), or CD14(+) monocyte blood cell phenotypes harbor infectious prions. All four deer transfused with the blood mononuclear cell fraction from CWD(+) donor deer became PrP(CWD) positive by 19 months postinoculation, whereas none of the four deer inoculated with cell-free plasma from the same source developed prion infection. All four of the deer injected with B cells and three of four deer receiving platelets from CWD(+) donor deer became PrP(CWD) positive in as little as 6 months postinoculation, whereas none of the four deer receiving blood CD14(+) monocytes developed evidence of CWD infection (immunohistochemistry and Western blot analysis) after 19 months of observation. Results of the Tg(CerPrP) mouse bioassays mirrored those of the native cervid host. These results indicate that CWD blood infectivity is cell associated and suggest a significant role for B cells and platelets in trafficking CWD infectivity in vivo and support earlier tissue-based studies associating putative follicular B cells with PrP(CWD). Localization of CWD infectivity with leukocyte subpopulations may aid in enhancing the sensitivity of blood-based diagnostic assays for CWD and other TSEs.

Download full-text


Available from: Candace K Mathiason, Oct 02, 2015
29 Reads
  • Source
    • "The contribution of plasma to blood infectivity also depends on the experimental paradigm. In rodents, up to fifty percent of blood infectivity is recovered from plasma [18] while plasma does not seem to be infectious in cervids [16]. In sheep, plasma is consistently infectious albeit less than whole blood [20]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Prion transmission can occur by blood transfusion in human variant Creutzfeldt-Jakob disease and in experimental animal models, including sheep. Screening of blood and its derivatives for the presence of prions became therefore a major public health issue. As infectious titer in blood is reportedly low, highly sensitive and robust methods are required to detect prions in blood and blood derived products. The objectives of this study were to compare different methods - in vitro, ex vivo and in vivo assays - to detect prion infectivity in cells prepared from blood samples obtained from scrapie infected sheep at different time points of the disease. Protein misfolding cyclic amplification (PMCA) and bioassays in transgenic mice expressing the ovine prion protein were the most efficient methods to identify infected animals at any time of the disease (asymptomatic to terminally-ill stages). However scrapie cell and cerebellar organotypic slice culture assays designed to replicate ovine prions in culture also allowed detection of prion infectivity in blood cells from asymptomatic sheep. These findings confirm that white blood cells are appropriate targets for preclinical detection and introduce ex vivo tools to detect blood infectivity during the asymptomatic stage of the disease.
    PLoS ONE 08/2014; 9(8):e104287. DOI:10.1371/journal.pone.0104287 · 3.23 Impact Factor
  • Source
    • "urine and feces, saliva, environmental fomites, blood or blood components, or brain tissue) and by various routes (e.g. orally, intravenously, intracranially, or through environmental exposure) [31–33]. The sources of inoculum included terminally-ill white-tailed or mule deer (Odocoileus hemionus) of unknown PrP genotype (courtesy of Michael Miller, Colorado Division of Parks and Wildlife; Terry Spraker, Colorado State University; the National Park Service; and the Wisconsin Department of Natural Resources), and sub-passage studies in white-tailed deer of either of two genotypes: homozygous for glycine (i.e. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Transmissible spongiform encephalopathies (TSEs), or prion diseases, are a uniformly fatal family of neurodegenerative diseases in mammals that includes chronic wasting disease (CWD) of cervids. The early and ante-mortem identification of TSE-infected individuals using conventional western blotting or immunohistochemistry (IHC) has proven difficult, as the levels of infectious prions in readily obtainable samples, including blood and bodily fluids, are typically beyond the limits of detection. The development of amplification-based seeding assays has been instrumental in the detection of low levels of infectious prions in clinical samples. In the present study, we evaluated the cerebrospinal fluid (CSF) of CWD-exposed (n=44) and naïve (n=4) deer (n=48 total) for CWD prions (PrP(d)) using two amplification assays: serial protein misfolding cyclic amplification with polytetrafluoroethylene beads (sPMCAb) and real-time quaking induced conversion (RT-QuIC) employing a truncated Syrian hamster recombinant protein substrate. Samples were evaluated blindly in parallel with appropriate positive and negative controls. Results from amplification assays were compared to one another and to obex immunohistochemistry, and were correlated to available clinical histories including CWD inoculum source (e.g. saliva, blood), genotype, survival period, and duration of clinical signs. We found that both sPMCAb and RT-QuIC were capable of amplifying CWD prions from cervid CSF, and results correlated well with one another. Prion seeding activity in either assay was observed in approximately 50% of deer with PrP(d) detected by IHC in the obex region of the brain. Important predictors of amplification included duration of clinical signs and time of first tonsil biopsy positive results, and ultimately the levels of PrP(d) identified in the obex by IHC. Based on our findings, we expect that both sPMCAb and RT-QuIC may prove to be useful detection assays for the detection of prions in CSF.
    PLoS ONE 11/2013; 8(11):e81488. DOI:10.1371/journal.pone.0081488 · 3.23 Impact Factor
  • Source
    • "Our results indicate that, in the PG127 scrapie model, plasma displayed limited capacity to transmit the disease by transfusion. This observation concurs with the results recently reported in both BSE infected sheep and Chronic Wasting Diseases infected cervids [24], [36]. The results also support the view that leuco-depletion filters further reduce the risk of transmitting TSE by plasma. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The identification in the UK of 4 v-CJD infected patients thought to be due to the use of transfused Red Blood Cell units prepared from blood of donors incubating v-CJD raised major concerns in transfusion medicine. The demonstration of leucocyte associated infectivity using various animal models of TSE infection led to the implementation of systematic leuco-depletion (LD) of Red Blood cells concentrates (RBCs) in a number of countries. In the same models, plasma also demonstrated a significant level of infectivity which raised questions on the impact of LD on the v-CJD transmission risk. The recent development of filters combining LD and the capture of non-leucocyte associated prion infectivity meant a comparison of the benefits of LD alone versus LD/prion-reduction filters (LD/PR) on blood-borne TSE transmission could be made. Due to the similarity of blood/plasma volumes to human transfusion medicine an experimental TSE sheep model was used to characterize the abilities of whole blood, RBCs, plasma and buffy-coat to transmit the disease through the transfusion route. The impact of a standard RBCs LD filter and of two different RBCs LD/PR prototype filters on the disease transmission was then measured. Homologous recipients transfused with whole-blood, buffy-coat and RBCs developed the disease with 100% efficiency. Conversely, plasma, when intravenously administered resulted in an inconstant infection of the recipients and no disease transmission was observed in sheep that received cryo-precipitated fraction or supernatant obtained from infectious plasma. Despite their high efficacy, LD and LD/PR filtration of the Red Blood Cells concentrate did not provide absolute protection from infection. These results support the view that leuco-depletion strongly mitigates the v-CJD blood borne transmission risk and provide information about the relative benefits of prion reduction filters.
    PLoS ONE 07/2012; 7(7):e42019. DOI:10.1371/journal.pone.0042019 · 3.23 Impact Factor
Show more