Article

In vitro immunomodulatory activity of Lactobacillus fermentum CECT5716 and Lactobacillus salivarius CECT5713: two probiotic strains isolated from human breast milk.

Department of Physiology, Faculty of Pharmacy, University of Barcelona, Spain.
Immunobiology (Impact Factor: 2.81). 02/2010; 215(12):996-1004. DOI: 10.1016/j.imbio.2010.01.004
Source: PubMed

ABSTRACT Commensal bacteria, including some species of lactobacilli commonly present in human breast milk, appear to colonize the neonatal gut and contribute to protection against infant infections, suggesting that lactobacilli could potentially modulate immunity. In this study, we evaluated the potential of two Lactobacillus strains isolated from human milk to modulate the activation and cytokine profile of peripheral blood mononuclear cell (PBMC) subsets in vitro. Moreover, these effects were compared to the same probiotic species of non-milk origin. Lactobacillus salivarius CECT5713 and Lactobacillus fermentum CECT5716 at 10⁵, 10⁶ and 10⁷ bacteria/mL were co-cultured with PBMC (10⁶/mL) from 8 healthy donors for 24 h. Activation status (CD69 and CD25 expressions) of natural killer (NK) cells (CD56+), total T cells (CD3+), cytotoxic T cells (CD8+) and CD4+ T cells was determined by flow cytometry. Regulatory T cells (Treg) were also quantified by intracellular Foxp3 evaluation. Regarding innate immunity, NK cells were activated by addition of both Lactobacillus strains, and in particular, the CD8+ NK subset was preferentially induced to highly express CD69 (~90%, p<0.05). With respect to acquired immunity, approximately 9% of CD8+ T cells became activated after co-cultivation with L. fermentum or L salivarius. Although CD4+ T cells demonstrated a weaker response, there was a preferential activation of Treg cells (CD4+CD25+Foxp3+) after exposure to both milk probiotic bacteria (p<0.05). Both strains significantly induced the production of a number of cytokines and chemokines, including TNFα, IL-1β, IL-8, MIP-1α, MIP-1β, and GM-CSF, but some strain-specific effects were apparent. This work demonstrates that L salivarius CECT5713 and L. fermentum CECT5716 enhanced both natural and acquired immune responses, as evidenced by the activation of NK and T cell subsets and the expansion of Treg cells, as well as the induction of a broad array of cytokines.

0 Bookmarks
 · 
65 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Colonizing commensal bacteria after birth are required for the proper development of the gastrointestinal tract. It is believed that bacterial colonization pattern in neonatal gut affects gut barrier function and immune system maturation. Studies on the development of faecal microbiota in infants showed that the neonatal gut was first colonized with enterococci followed by other microbiota such as Bifidobacterium. Other studies showed that babies who developed allergy were less often colonized with Enterococcus during the first month of life as compared to healthy infants. Many studies have been conducted to elucidate how bifidobacteria or lactobacilli, some of which are considered probiotic, regulate infant gut immunity. However, fewer studies have been focused on enterococi. In our study, we demonstrate that E. faecalis, isolated from healthy newborns, suppress inflammatory responses activated in vivo and in vitro. We found E. faecalis attenuates proinflammatory cytokine secretions, especially IL-8, through JNK and p38 signaling pathways. This finding shed light on how the first colonizer, E.faecalis, regulates inflammatory responses in the host.
    PLoS ONE 01/2014; 9(5):e97523. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Influenza is a major cause of death in the over 65s. Increased susceptibility to infection and reduced response to vaccination are due to immunosenscence in combination with medical history and lifestyle factors. Age-related alterations in the composition of the gut microbiota have a direct impact on the immune system and it is proposed that modulation of the gut microbiota using pre- and probiotics could offer an opportunity to improve immune responses to infections and vaccination in older people. There is growing evidence that probiotics have immunomodulatory properties, which to some extent are strain-dependent, and are strongly influenced by ageing. Randomised controlled trials suggest that probiotics may reduce the incidence and/or severity of respiratory infections, although there is limited data on older people. A small number of studies have examined the potential adjuvant effects of selected probiotics for vaccination against influenza; however, the data is inconsistent, particularly in older people. This review describes the impact of age-related changes in the gut on the immune response to respiratory infections and evaluates whether restoration of gut microbial homoeostasis by probiotics offers an opportunity to modulate the outcome of respiratory infections and vaccination against influenza in older people. Although there is promising evidence for effects of probiotics on human health, there is a lack of consistent data, perhaps partly due to strain-specific differences and an influence of the age of the host. Further research is critical in evaluating the potential use of probiotics in respiratory infections and vaccination in the ageing population.
    Proceedings of The Nutrition Society 12/2013; · 3.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The intestinal immune system maintains a delicate balance between immunogenicity against invading pathogens and tolerance to the commensal microbiota and food antigens. Different strains of probiotics possess the ability to finely regulate the activation of dendritic cells (DC), polarising the subsequent activity of T-cells. Nevertheless, information about their underlying mechanisms of action is scarce. In the present study, we investigated the immunomodulatory effects of a potentially probiotic strain, Lactobacillus rhamnosus CNCM I-4036, and its cell-free culture supernatant (CFS) on human DC challenged with Escherichia coli. The results showed that the levels of pro-inflammatory cytokines such as IL-1β, IL-6, IL-8 and IL-12p70 were higher in the cells treated with live L. rhamnosus than in the cells treated with the CFS. In the presence of E. coli, the supernatant was more effective than the probiotic bacteria in reducing the secretion of pro-inflammatory cytokines. In addition, live L. rhamnosus potently induced the production of transforming growth factor (TGF)-β1 and TGF-β2, whereas the CFS increased the secretion of TGF-β1. However, in the presence of E. coli, both treatments restored the levels of TGF-β. The probiotic strain L. rhamnosus CNCM I-4036 and its CFS were able to activate the Toll-like receptor signalling pathway, enhancing innate immunity. The two treatments induced gene transcription of TLR-9. Live L. rhamnosus activated the expression of TLR-2 and TLR-4 genes, whereas the CFS increased the expression of TLR-1 and TLR-5 genes. In response to the stimulation with probiotic/CFS and E. coli, the expression of each gene tested was notably increased, with the exception of TNF-α and NFKBIA. In conclusion, the CFS exhibited an extraordinary ability to suppress the production of pro-inflammatory cytokines by DC, and may be used as an effective and safer alternative to live bacteria.
    The British journal of nutrition 01/2014; · 3.45 Impact Factor

Full-text

View
1 Download
Available from
Aug 28, 2014