Article

Occurrence of tetracycline resistance genes in aquaculture facilities with varying use of oxytetracycline.

Department of Civil and Environmental Engineering, University of Wisconsin at Madison, 3204 Engineering Hall, 1415 Engineering Drive, Madison, WI 53706, USA.
Microbial Ecology (Impact Factor: 3.12). 03/2010; 59(4):799-807. DOI: 10.1007/s00248-009-9624-7
Source: PubMed

ABSTRACT The contribution of human activities to environmental reservoirs of antibiotic resistance is poorly understood. The purpose of this study was to determine if oxytetracycline (OTC) use in aquaculture facilities increased the detection frequency (i.e., prevalence) of tetracycline resistance (tet(R)) genes relative to facilities with no recent OTC treatment. We used polymerase chain reaction to screen water and sediment from four noncommercial fish farms in northwestern Wisconsin for the presence of ten tet(R) determinants: tet(A), tet(B), tet(D), tet(E), tet(G), tet(M), tet(O), tet(Q), tet(S), and tet(W). Water from farms with recent OTC use had significantly higher tet(R) detection frequencies than did water from farms without recent OTC use, with prevalence in raceways and rearing ponds of farms with recent OTC use exceeding by more than twofold that of farms not using OTC. Effluent from all farms, regardless of treatment regime, had higher tet(R) detection frequencies than their corresponding influent for all genes, but the specific combinations of tet(R) genes detected in a sample were not different from their corresponding influent. Although OTC use was associated with the increased occurrence and diversity of tet(R) genes in water samples, it was not found to relate to tet(R) gene occurrence in sediment samples. Sediment samples from facilities with no recent OTC use had significantly higher frequencies of tet(R) gene detection than did samples from facilities with recent OTC use. All of the tet(R) genes were detected in both the medicated and nonmedicated feed samples analyzed in this study. These findings suggest that both OTC treatment in aquaculture facilities and the farms themselves may be sources of tet(R) gene introduction to the environment. To our knowledge, this is the first study to use genotypic and cultivation-independent methods to examine tet(R) gene occurrence associated with OTC use in aquaculture.

1 Follower
 · 
146 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aquaculture health management demands a constant growth in the production by stabilizing economic loss and implementing various natural plant-based bio products for treating pathogenic bacteria. Pathogenic effects of the Citrobacter freundii isolated from fingerlings of Tilapia collected from a fish farm showed symptoms like tail necrosis, septicemia, hemorrhage, and reddening of the body. Antibacterial activity of C. freundii was tested against various medicinal plants. Of the three plants screened, Azadirachta indica (Neem) showed good antibacterial activity against C. freundii. The present study revealed that A. indica plant extract at a concentration of 150 mg/l in vivo can be used as an alternative to antibiotics for treating this bacterial infection. The use of medicinal plant extract-mediated treatment was found to be very effective in controlling this bacterial infection.
    Aquaculture 02/2015; 437. DOI:10.1016/j.aquaculture.2014.12.008 · 1.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The concentrations of tetracycline-intermediate resistant, tetracycline-resistant heterotrophic bacteria, and total heterotrophic bacteria were examined to assess the influence of tetracycline on tetracycline-resistant heterotrophs by the R2A agar cultivation method in the tetracycline fortified activated sludge process and in the natural background. Results showed that the percentages of both tetracycline-intermediate resistant and tetracycline-resistant heterotrophic bacteria in total heterotrophic bacteria were significantly increased, after tetracycline was fed to activated sludge for a 3 months period under four different operating conditions, as compared with the background. In order to investigate the mechanism of activated sludge resistance to tetracycline, polymerase chain reaction experiments were carried out to analyze the existence and evolution of tet genes in the presence of tetracycline. Results revealed that only tet A and tet B genes out of the 11 target tet genes were observed in tetracycline treated activated sludge while no tet gene was detected in background. This indicated that tet A gene could accumulate in activated sludge with slower and continuous influent, while the accumulation of tet B gene could be attributed to shorter hydraulic retention time. Therefore, it was proposed in this study that tetracycline-resistant genes created by efflux pumps spread earlier and quicker to encode resistance to tetracycline, which facilitated the increase in tetracycline-resistance.
    Current Microbiology 11/2014; 70(3). DOI:10.1007/s00284-014-0731-4 · 1.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The main aim of the study was to evaluate the role of scallop hatcheries as source of the floR and cmlA genes. A number of 133 and 121 florfenicol-resistant strains were isolated from scallop larval cultures prior to their transfer to seawater and from effluent samples from 2 commercial hatcheries and identified by 16S rRNA gene sequence analysis, observing a predominance of the Pseudomonas, Pseudoalteromonas and Halomonas genera and exhibiting an important incidence of co-resistance to streptomycin, oxytetracycline and co-trimoxazole. A high percentage of strains from both hatcheries carried the floR gene (68.4% and 89.3% of strains), whereas a lower carriage of the cmlA gene was detected (27.1% and 54.5% of strains). The high prevalence of floR-carrying bacteria in reared scallop larvae and hatchery effluents contributes to enrich the marine resistome in marine environments, prompting the need of a continuous surveillance of these genes in the mariculture environments. Copyright © 2015. Published by Elsevier Ltd.
    Marine Pollution Bulletin 05/2015; DOI:10.1016/j.marpolbul.2015.04.026 · 2.79 Impact Factor