Apoptosis is regulated by the VDAC1 N-terminal region and by VDAC oligomerization: release of cytochrome c, AIF and Smac/Diablo

Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
Biochimica et Biophysica Acta (Impact Factor: 4.66). 03/2010; 1797(6-7):1281-91. DOI: 10.1016/j.bbabio.2010.03.003
Source: PubMed

ABSTRACT Mitochondria, central to basic life functions due to their generation of cellular energy, also serve as the venue for cellular decisions leading to apoptosis. A key protein in mitochondria-mediated apoptosis is the voltage-dependent anion channel (VDAC), which also mediates the exchange of metabolites and energy between the cytosol and the mitochondria. In this study, the functions played by the N-terminal region of VDAC1 and by VDAC1 oligomerization in the release of cytochrome c, Smac/Diablo and apoptosis-inducing factor (AIF) and subsequent apoptosis were addressed. We demonstrate that cells undergoing apoptosis induced by STS or cisplatin and expressing N-terminally truncated VDAC1 do not release cytochrome c, Smac/Diablo or AIF. Ruthenium red (RuR), AzRu, DIDS and hexokinase-I (HK-I), all known to interact with VDAC, inhibited the release of cytochrome c, Smac/Diablo and AIF, while RuR-mediated inhibition was not observed in cells expressing RuR-insensitive E72Q-VDAC1. These findings suggest that VDAC1 is involved in the release of not only cytochrome c but also of Smac/Diablo and AIF. We also demonstrate that apoptosis induction is associated with VDAC oligomerization, as revealed by chemical cross-linking and monitoring in living cells using Bioluminescence Resonance Energy Transfer. Apoptosis induction by STS, H2O2 or selenite augmented the formation of VDAC oligomers several fold. The results show VDAC1 to be a component of the apoptosis machinery and offer new insight into the functions of VDAC1 oligomerization in apoptosis and of the VDAC1 N-terminal domain in the release of apoptogenic proteins as well as into regulation of VDAC by anti-apoptotic proteins, such as HK and Bcl2.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: VDAC1 is a multi-functional mitochondrial protein regulating cell life and death•Silencing VDAC1 over-expressed in cancer inhibits cell growth in vivo and in vitro•VDAC1 activities are modulated by associated proteins•A novel mechanism for VDAC1-mediated release of apoptotic proteins is presented•VDAC1-based strategies are proposed for cancer therapeutic applications
    Biochimica et Biophysica Acta (BBA) - Biomembranes 11/2014; DOI:10.1016/j.bbamem.2014.10.040 · 3.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: High-fat diet (HFD) leads to the development of obesity accompanied by insulin resistance, which increases the risk of type 2 diabetes mellitus and cardiovascular disease. Brown adipose tissue (BAT) plays an essential role in energy metabolism, thus it will give us promising treatment targets through elucidating underlying mechanisms of BAT in obesity. In this study, female C57BL/6J mice were fed HFD or normal diet (ND) for 22 weeks. Hyperinsulinemic-euglycemic clamp was performed to evaluate insulin sensitivity, which was independently correlated with obesity. Using isobaric tag for relative and absolute quantification (iTRAQ) coupled with 2D LC-MS/MS, we quantitated 3048 proteins in BAT. As compared HFD with ND, we obtained 727 differentially expressed proteins. Functional analysis found that those proteins were mainly assigned to the pathway of mitochondrial function. In this pathway, carnitine O-palmitoyltransferase 2 (CPT2), uncoupling protein 1 (UCP1) and apoptosis-inducing factor 1 (AIF1) were up-regulated significantly by HFD, and they were confirmed by western blotting. The results indicated that HFD might induce the apoptosis of brown adipocytes via the up-regulated AIF1. Meanwhile, HFD also stimulated fatty acid β-oxidation and raised compensatory energy consuming through the increases of CPT2 and UCP1, respectively. However, the apoptosis of brown adipocytes might weaken the compensatory energy expenditure, and finally contribute to overweight/obesity. So, preventing the apoptosis of brown adipocytes may be the key target to treat obesity.
    PLoS ONE 03/2015; 10(3):e0119350. DOI:10.1371/journal.pone.0119350 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endoplasmic reticulum (ER) stress occurring in stringent conditions is critically involved in cardiomyocytes apoptosis and cardiac contractile dysfunction (CCD). However, the molecular machinery that mediates cardiac ER stress and subsequent cell death remains to be fully deciphered, which will hopefully provide novel therapeutic targets for these disorders. Here, we establish tunicamycin-induced model of cardiomyocyte ER stress, which effectively mimicks pathological stimuli to trigger CCD. Tunicamycin activates volume-sensitive outward rectifying Cl(-) currents. Blockade of the volume-sensitive outwardly rectifying (VSOR) Cl(-) channel by 4,4'-diisothiocya-natostilbene-2,2'-disulfonic acid (DIDS), a non-selective Cl(-) channel blocker, and 4-(2-butyl-6,7-dichlor-2-cyclopentyl-indan-1-on-5-yl) oxybutyric acid (DCPIB), a selective VSOR Cl(-) channel blocker, improves cardiac contractility, which correlates with suppressed ER stress through inhibiting the canonical GRP78/eIF2α/ATF4 and XBP1 pathways, and promotes survival of cardiomyocytes by inverting tunicamycin-induced decrease of Wnt through the CHOP pathway. VSOR activation of tunicamycin-treated cardiomyocytes is attributed to increased intracellular levels of reactive oxygen species (ROS). Our study demonstrates a pivotal role of ROS/VSOR in mediating ER stress and functional impairment of cardiomyocytes via the CHOP-Wnt pathway, and suggests the therapeutic values of VSOR Cl(-) channel blockers against ER stress-associated cardiac anomalies.
    Cell Death & Disease 11/2014; 5:e1528. DOI:10.1038/cddis.2014.479 · 5.18 Impact Factor


Available from