Neural correlates of visuospatial working memory in the 'at-risk mental state'.

Psychosis Clinical Academic Group, Institute of Psychiatry, King's College London, UK.
Psychological Medicine (Impact Factor: 5.59). 03/2010; 40(12):1987-99. DOI: 10.1017/S0033291710000280
Source: PubMed

ABSTRACT Impaired spatial working memory (SWM) is a robust feature of schizophrenia and has been linked to the risk of developing psychosis in people with an at-risk mental state (ARMS). We used functional magnetic resonance imaging (fMRI) to examine the neural substrate of SWM in the ARMS and in patients who had just developed schizophrenia.
fMRI was used to study 17 patients with an ARMS, 10 patients with a first episode of psychosis and 15 age-matched healthy comparison subjects. The blood oxygen level-dependent (BOLD) response was measured while subjects performed an object-location paired-associate memory task, with experimental manipulation of mnemonic load.
In all groups, increasing mnemonic load was associated with activation in the medial frontal and medial posterior parietal cortex. Significant between-group differences in activation were evident in a cluster spanning the medial frontal cortex and right precuneus, with the ARMS groups showing less activation than controls but greater activation than first-episode psychosis (FEP) patients. These group differences were more evident at the most demanding levels of the task than at the easy level. In all groups, task performance improved with repetition of the conditions. However, there was a significant group difference in the response of the right precuneus across repeated trials, with an attenuation of activation in controls but increased activation in FEP and little change in the ARMS.
Abnormal neural activity in the medial frontal cortex and posterior parietal cortex during an SWM task may be a neural correlate of increased vulnerability to psychosis.

  • [Show abstract] [Hide abstract]
    ABSTRACT: While structural abnormalities of the dorsolateral prefrontal cortex (DLPFC) may pre-date and predict psychosis onset, the relationships between functional deficits, cognitive and psychosocial impairments has yet to be explored in the at-risk period. An established measure of cognitive control (AXCPT) was administered to demographically matched clinical-high-risk (CHR; n=25), first-episode schizophrenia (FE; n=35), and healthy control (HC; n=35) participants during functional magnetic resonance imaging (fMRI) to investigate these relationships. CHR and FE individuals demonstrated impaired context processing and reduced DLPFC activation relative to HC individuals during increased cognitive control demands. FE and CHR individuals' ability to increase DLPFC activity in response to cognitive control demands was associated with better task performance. Task performance was also associated with severity of disorganization and poverty symptoms in FE participants. These findings support more extensive studies using fMRI to examine the clinical significance of prefrontal cortical functioning in the earliest stages of psychosis.
    Psychiatry research. 10/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Deficits in working memory are widely reported in schizophrenia and are considered a trait marker for the disorder. Event-related potentials (ERPs) and imaging data suggest that these differences in working memory performance may be due to aberrant functioning in the prefrontal and parietal cortices. Research suggests that many of the same risk factors for schizophrenia are shared with individuals from the general population who report psychotic symptoms. METHODS: Forty-two participants (age range 11--13 years) were divided into those who reported psychotic symptoms (N = 17) and those who reported no psychotic symptoms, i.e. the control group (N = 25). Behavioural differences in accuracy and reaction time were explored between the groups as well as electrophysiological correlates of working memory using a Spatial Working Memory Task, which was a variant of the Sternberg paradigm. Specifically, differences in the P300 component were explored across load level (low load and high load), location (positive probe i.e. in the same location as shown in the study stimulus and negative probe i.e. in a different location to the study stimulus) and between groups for the overall P300 timeframe. The effect of load was also explored at early and late timeframes of the P300 component (250-430 ms and 430-750 ms respectively). RESULTS: No between-group differences in the behavioural data were observed. Reduced amplitude of the P300 component was observed in the psychotic symptoms group relative to the control group at posterior electrode sites. Amplitude of the P300 component was reduced at high load for the late P300 timeframe at electrode sites Pz and POz. CONCLUSIONS: These results identify neural correlates of neurocognitive dysfunction associated with population level psychotic symptoms and provide insights into ERP abnormalities associated with the extended psychosis phenotype.
    BMC Psychiatry 05/2013; 13(1):125. · 2.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent evidence has revealed abnormal functional connectivity between the frontal and parietal brain regions during working memory processing in patients with schizophrenia and first-episode psychosis. However, it still remains unclear whether abnormal frontoparietal connectivity during working memory processing is already evident in the psychosis high-risk state and whether the connection strengths are related to psychopathological outcomes. Healthy controls and antipsychotic-naive individuals with an at-risk mental state (ARMS) performed an n-back working memory task while undergoing functional magnetic resonance imaging. Effective connectivity between frontal and parietal brain regions during working memory processing were characterized using dynamic causal modelling. Our study included 19 controls and 27 individuals with an ARMS. In individuals with an ARMS, we found significantly lower task performances and reduced activity in the right superior parietal lobule and middle frontal gyrus than in controls. Furthermore, the working memory-induced modulation of the connectivity from the right middle frontal gyrus to the right superior parietal lobule was significantly reduced in individuals with an ARMS, while the extent of this connectivity was negatively related to the Brief Psychiatric Rating Scale total score. The modest sample size precludes a meaningful subgroup analysis for participants with a later transition to psychosis. This study demonstrates that abnormal frontoparietal connectivity during working memory processing is already evident in individuals with an ARMS and is related to psychiatric symptoms. Thus, our results provide further insight into the pathophysiological mechanisms of the psychosis high-risk state by linking functional brain imaging, computational modelling and psychopathology.
    Journal of psychiatry & neuroscience: JPN 02/2014; 39(1):130102. · 6.24 Impact Factor


Available from
May 20, 2014