Hepatic endoderm differentiation from human embryonic stem cells.

MRC-Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK.
Current Stem Cell Research & Therapy (Impact Factor: 2.86). 03/2010; 5(3):233-44. DOI: 10.2174/157488810791824403
Source: PubMed

ABSTRACT Primary human hepatocytes are a scarce resource with variable function which diminishes with time in culture. As a consequence their use in tissue modelling and therapy is restricted. Human embryonic stem cells (hESC) could provide a stable source of human tissue due to their properties of self-renewal and their ability to give rise to all three germ layers. hESCs have the potential to provide an unlimited supply of hepatic endoderm (HE) which could offer efficient tools for drug discovery, disease modelling and therapeutic applications. There has been a major focus on developing protocols to derive functional HE from hESCs. This review focuses on human liver biology and the translation of observations of in vivo systems into developing differentiation protocols to yield hepatic endoderm. It also details the potential role of oxygen tension as a new regulatory mechanism in HE differentiation and points out the importance of the mitochondrial function analysis in defining successful HE generation.

Download full-text


Available from: David C Hay, Jul 04, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The coordination of signalling pathways within the cell is vital for normal human development and post-natal tissue homeostasis. Gene expression and function is therefore tightly controlled at a number of levels. We investigated the role that post-translational modifications play during human hepatocyte differentiation. In particular, we examined the role of the small ubiquitin-like modifier (SUMO) proteins in this process. We used a human embryonic stem cell (hESC)-based model of hepatocyte differentiation to follow changes in protein SUMOylation. Moreover, to confirm the results derived from our cell-based system, we performed in vitro conjugation assays to characterise SUMO modification of a key liver-enriched transcription factor, HNF4α. Our analyses indicate that SUMOylation plays an important role during hepatocellular differentiation and this is mediated, in part, through regulation of the stability of HNF4α in a ubiquitin-dependent manner. Our study provides a better understanding of SUMOylation during human hepatocyte differentiation and maturation. Moreover, we believe the results will stimulate interest in the differentiation and phenotypic regulation of other somatic cell types.
    Journal of Cell Science 04/2012; 125(Pt 15):3630-5. DOI:10.1242/jcs.102889
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Post-translational modifications (PTMs) are chemical alterations to a protein following translation, regulating stability and function. Reversible phosphorylation is an example of an important and well studied PTM involved in a number of cellular processes. SUMOylation is another PTM known to modify a large number of proteins and plays a role in various cellular processes including: cell cycle regulation, gene transcription, differentiation and cellular localisation. Therefore, understanding the role of SUMOylation in cell biology may allow the development of more efficient models, important in streamlining the drug discovery process. This review will focus on protein SUMOylation and its role in stem cell and somatic cell biology.
    Toxicology 12/2010; 278(3):288-93. DOI:10.1016/j.tox.2010.07.013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Orthotropic liver transplantation is the only established treatment for end-stage liver diseases. Utilization of hepatocyte transplantation and bio-artificial liver devices as alternative therapeutic approaches requires an unlimited source of hepatocytes. Stem cells, especially embryonic stem cells, possessing the ability to produce functional hepatocytes for clinical applications and drug development, may provide the answer to this problem. New discoveries in the mechanisms of liver development and the emergence of induced pluripotent stem cells in 2006 have provided novel insights into hepatocyte differentiation and the use of stem cells for therapeutic applications. This review is aimed towards providing scientists and physicians with the latest advancements in this rapidly progressing field.
    Stem cell reviews 02/2011; 7(3):748-59. DOI:10.1007/s12015-010-9216-4