PKA-induced phosphorylation of ERα at serine 305 and high PAK1 levels is associated with sensitivity to tamoxifen in ER-positive breast cancer.

Department of Experimental Therapy, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Breast Cancer Research and Treatment (Impact Factor: 4.47). 03/2010; 125(1):1-12. DOI: 10.1007/s10549-010-0798-y
Source: PubMed

ABSTRACT Phosphorylation of estrogen receptor α at serine 305 (ERαS305-P) by protein kinase A (PKA) or p21-activated kinase 1 (PAK1) has experimentally been associated with tamoxifen sensitivity. Here, we investigated the clinical application of this knowledge to predict tamoxifen resistance in ER-positive breast cancer patients. Using immunohistochemistry, a score including PAK1 and co-expression of PKA and ERαS305-P (PKA/ERαS305-P) was developed on a training set consisting of 103 patients treated with tamoxifen for metastatic disease, and validated on 231 patients randomized between adjuvant tamoxifen or no treatment. In the training set, PAK1 levels were associated with tumor progression after tamoxifen (HR 1.57, 95% CI 0.99-2.48), as was co-expression of PKA and ERαS305-P (HR 2.00, 95% CI 1.14-3.52). In the validation set, a significant tamoxifen benefit was found among the 73% patients negative for PAK1 and PKA/ERαS305-P (HR 0.54, 95% CI 0.34-0.87), while others (27%) were likely to have no benefit from tamoxifen (HR 0.88, 95% 0.42-1.82). The test for interaction showed a significant difference in recurrence-free survival between groups defined by PAK1 and PKA/ERαS305-P (P = 0.037). Elevated PAK1 and PKA/ERαS305-P appeared to influence tamoxifen sensitivity. Both PAK1 and PKA/ERαS305-P levels were associated with sensitivity to tamoxifen in breast tumors and the combination of these variables should be considered in predicting tamoxifen benefit.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Resistance to antiestrogens is one of the major challenges in breast cancer treatment. Although phosphorylation of estrogen receptor α (ERα) is an important factor in endocrine resistance, the contributions of specific kinases in endocrine resistance are still not fully understood. Here, we report that an important innate immune response kinase, the IκB kinase-related TANK-binding kinase 1 (TBK1), is a crucial determinant of resistance to tamoxifen therapies. We show that TBK1 increases ERα transcriptional activity through phosphorylation modification of ERα at the Ser-305 site. Ectopic TBK1 expression impairs the responsiveness of breast cancer cells to tamoxifen. By studying the specimens from patients with breast cancer, we find a strong positive correlation of TBK1 with ERα, ERα Ser-305, and cyclin D1. Notably, patients with tumors highly expressing TBK1 respond poorly to tamoxifen treatment and show high potential for relapse. Therefore, our findings suggest that TBK1 contributes to tamoxifen resistance in breast cancer via phosphorylation modification of ERα.
    Proceedings of the National Academy of Sciences 01/2014; · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs are evolutionarily conserved, small non-coding RNAs that are believed to play fundamental roles in various biological processes through regulation of gene expression at the level of post-transcription. MiR-375 was first identified as a pancreatic islet-specific microRNA regulating insulin secretion. However, further study revealed that miR-375 is a multifunctional microRNA participating in pancreatic islet development, glucose homeostasis, mucosal immunity, lung surfactant secretion, and more importantly, tumorigenesis. Recently, miR-375 has been found significantly downregulated in multiple types of cancer, and suppresses core hallmarks of cancer by targeting several important oncogenes like AEG-1, YAP1, IGF1R and PDK1. The alteration of miR-375 in cancer is caused by a variety of mechanisms, including the dysregulation of transcription factors, aberrant promoter methylation, etc. Reduced expression of miR-375 in tissue or circulation may indicate the presence of neoplasia as well as a poor prognosis of many malignant cancers. Moreover, miR-375 stands for a promising direction for developing targeted therapies due to its capacity to inhibit tumor cell growth in vitro and in vivo. Here we summarize the present understanding of the tumor suppressive role of miR-375 in cancer progression; the mechanisms underlying the dysregulation of miR-375; the potential use of miR-375 in prognosis and diagnosis; and the therapeutic prospects of miR-375 in cancer. © 2013 Wiley Periodicals, Inc.
    International Journal of Cancer 10/2013; · 6.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Acquired resistance to the anti-estrogen tamoxifen remains a significant challenge in breast cancer management. In this study we used an integrative approach to characterize global protein expression and tyrosine-phosphorylation events in tamoxifen-resistant MCF7 breast cancer cells (TamR) compared with parental controls. Quantitative mass-spectrometry and computational approaches were combined to identify perturbed signalling networks, and candidate regulatory proteins were functionally interrogated by siRNA-mediated knockdown. Network analysis revealed that cellular metabolism was perturbed in TamR cells, together with pathways enriched for proteins associated with growth-factor, cell-cell and cell-matrix-initiated signalling. Consistent with known roles for Ras/MAPK and PI3-kinase signalling in tamoxifen resistance, tyrosine phosphorylated MAPK1, SHC1 and PIK3R2 were elevated in TamR cells. Phosphorylation of the tyrosine kinase Yes and expression of the actin-binding protein MARCKS were elevated 2- and 8-fold in TamR cells respectively, and were selected for further analysis. Knockdown of either protein in TamR cells had no effect on anti-estrogen-sensitivity, but significantly decreased cell motility. MARCKS expression was significantly higher in breast cancer cell lines than normal mammary epithelial cells and in ER-negative versus ER-positive breast cancer cell lines. In primary breast cancers, cytoplasmic MARCKS staining was significantly higher in basal-like and HER2 cancers than in luminal cancers, and was independently predictive of poor survival in multivariate analyses of the whole cohort (p<0.0001) and in ER-positive patients (p=0.0005). These findings provide network-level insights into the molecular alterations associated with the tamoxifen-resistant phenotype and identify MARCKS as a potential biomarker of therapeutic responsiveness that may assist stratification of patients for optimal therapy. This article is protected by copyright. All rights reserved.
    FEBS Journal 07/2013; · 4.25 Impact Factor

Full-text (2 Sources)

Available from
Jun 3, 2014