Article

PKA-induced phosphorylation of ERα at serine 305 and high PAK1 levels is associated with sensitivity to tamoxifen in ER-positive breast cancer.

Department of Experimental Therapy, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Breast Cancer Research and Treatment (Impact Factor: 4.47). 03/2010; 125(1):1-12. DOI: 10.1007/s10549-010-0798-y
Source: PubMed

ABSTRACT Phosphorylation of estrogen receptor α at serine 305 (ERαS305-P) by protein kinase A (PKA) or p21-activated kinase 1 (PAK1) has experimentally been associated with tamoxifen sensitivity. Here, we investigated the clinical application of this knowledge to predict tamoxifen resistance in ER-positive breast cancer patients. Using immunohistochemistry, a score including PAK1 and co-expression of PKA and ERαS305-P (PKA/ERαS305-P) was developed on a training set consisting of 103 patients treated with tamoxifen for metastatic disease, and validated on 231 patients randomized between adjuvant tamoxifen or no treatment. In the training set, PAK1 levels were associated with tumor progression after tamoxifen (HR 1.57, 95% CI 0.99-2.48), as was co-expression of PKA and ERαS305-P (HR 2.00, 95% CI 1.14-3.52). In the validation set, a significant tamoxifen benefit was found among the 73% patients negative for PAK1 and PKA/ERαS305-P (HR 0.54, 95% CI 0.34-0.87), while others (27%) were likely to have no benefit from tamoxifen (HR 0.88, 95% 0.42-1.82). The test for interaction showed a significant difference in recurrence-free survival between groups defined by PAK1 and PKA/ERαS305-P (P = 0.037). Elevated PAK1 and PKA/ERαS305-P appeared to influence tamoxifen sensitivity. Both PAK1 and PKA/ERαS305-P levels were associated with sensitivity to tamoxifen in breast tumors and the combination of these variables should be considered in predicting tamoxifen benefit.

0 Bookmarks
 · 
104 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein kinase A (PKA) hyperactivation causes hereditary endocrine neoplasias; however, its role in sporadic epithelial cancers is unknown. Here, we show that heightened PKA activity in the mammary epithelium generates tumors. Mammary-restricted biallelic ablation of Prkar1a, which encodes for the critical type-I PKA regulatory subunit, induced spontaneous breast tumors characterized by enhanced type-II PKA activity. Downstream of this, Src phosphorylation occurs at residues serine-17 and tyrosine-416 and mammary cell transformation is driven through a mechanism involving Src signaling. The phenotypic consequences of these alterations consisted of increased cell proliferation and, accordingly, expansion of both luminal and basal epithelial cell populations. In human breast cancer, low PRKAR1A/high SRC expression defines basal-like and HER2 breast tumors associated with poor clinical outcome. Together, the results of this study define a novel molecular mechanism altered in breast carcinogenesis and highlight the potential strategy of inhibiting SRC signaling in treating this cancer subtype in humans.Oncogene advance online publication, 24 March 2014; doi:10.1038/onc.2014.41.
    Oncogene 03/2014; · 7.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite the clinical success of tamoxifen, its resistance remains a major challenge in breast cancer. Here we show that Aurora-A determines tamoxifen sensitivity by regulation of oestrogen receptor (ER)α. Ectopic expression of Aurora-A decreases and depletion of Aurora-A enhances tamoxifen sensitivity in ERα-positive breast cancer. Elevated Aurora-A was significantly associated with the recurrence of ERα-positive tumours. Notably, Aurora-A inhibitor MLN8237, which is currently in clinical trial, synergizes with tamoxifen and overcomes tamoxifen resistance. Furthermore, Aurora-A interacts with and phosphorylates ERα on serine-167 and -305, leading to increase in ERα DNA-binding and transcriptional activity. Elevated levels of Aurora-A are significantly associated with disease-free survival in ERα-positive but not ERα-negative breast cancers. These data suggest that Aurora-A has a pivotal role in tamoxifen resistance and ERα is a bona fide substrate of Aurora-A. Thus, Aurora-A represents a prognostic marker in ERα-positive tumour and a critical therapeutic target in tamoxifen-resistant breast cancer, and Aurora-A inhibitor could be used as either an independent or concurrent agent in tamoxifen-resistant tumour.Oncogene advance online publication, 28 October 2013; doi:10.1038/onc.2013.444.
    Oncogene 10/2013; · 7.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Resistance to antiestrogens is one of the major challenges in breast cancer treatment. Although phosphorylation of estrogen receptor α (ERα) is an important factor in endocrine resistance, the contributions of specific kinases in endocrine resistance are still not fully understood. Here, we report that an important innate immune response kinase, the IκB kinase-related TANK-binding kinase 1 (TBK1), is a crucial determinant of resistance to tamoxifen therapies. We show that TBK1 increases ERα transcriptional activity through phosphorylation modification of ERα at the Ser-305 site. Ectopic TBK1 expression impairs the responsiveness of breast cancer cells to tamoxifen. By studying the specimens from patients with breast cancer, we find a strong positive correlation of TBK1 with ERα, ERα Ser-305, and cyclin D1. Notably, patients with tumors highly expressing TBK1 respond poorly to tamoxifen treatment and show high potential for relapse. Therefore, our findings suggest that TBK1 contributes to tamoxifen resistance in breast cancer via phosphorylation modification of ERα.
    Proceedings of the National Academy of Sciences 01/2014; · 9.74 Impact Factor

Full-text (2 Sources)

View
26 Downloads
Available from
Jun 3, 2014