Article

Overexpression of CXC chemokine ligand 14 exacerbates collagen-induced arthritis.

Department of Immunology, Baylor College of Medicine, Houston, TX 77030, USA.
The Journal of Immunology (Impact Factor: 5.36). 03/2010; 184(8):4455-9. DOI: 10.4049/jimmunol.0900525
Source: PubMed

ABSTRACT CXCL14 is a relatively new chemokine with unidentified receptor and undefined function. Recently, we found that CXCL14 is upregulated in arthritic joints in a mouse model of autoimmune arthritis, collagen-induced arthritis. To examine the role of CXCL14 in the development and pathogenesis of autoimmune arthritis, we have generated transgenic (Tg) mice that overexpress CXCL14 under control of phosphoglycerate kinase promoter. The results showed that CXCL14-Tg mice developed more severe arthritis compared with wild-type controls. The draining lymph nodes of CXCL14-Tg mice were significantly enlarged and contained an increased number of activated T cells, particularly the CD44(+)CD62L(low) effector memory cells. In addition, T cells from CXCL14-Tg mice exhibited an enhanced proliferative response against collagen II and produced higher levels of IFN-gamma but not IL-4 or IL-17. CXCL14-Tg mice also had elevated levels of IgG2a autoantibodies. These findings indicated that CXCL14 plays an important role in the autoimmune arthritis, which may have an implication in understanding the pathogenic mechanisms of rheumatoid arthritis in humans and, ultimately, therapeutic interference.

0 Followers
 · 
144 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE: A low pH microenvironment is a characteristic feature of inflammation loci and affects the functions of immune cells. In this study, we investigated the effect of extracellular acidification on macrophage gene expression. METHODS: RAW264.7 macrophages were incubated in neutral (pH 7.4) or acidic (pH 6.8) medium for 4 h. Global mRNA expression levels were determined using Affymetrix genechips. RESULTS: The mRNA expressions of 353 macrophage genes were significantly modified after incubation in acidic medium; 193 were up-regulated and 160 down-regulated. Differentially regulated genes were grouped into 13 classes based on the functions of the corresponding protein products. Pathway analysis revealed that differentially expressed genes are enriched in pathways related to inflammation and immune responses. Quantitative real-time PCR analysis confirmed that the expressions of CXCL10, CXCL14, IL-18, IL-4RA, ABCA1, CCL4, IL-7R, CXCR4, TLR7, and CCL3 mRNAs were regulated by extracellular acidification. CONCLUSION: The results of this study provide insights into the effects of acidic extracellular environments on macrophage gene expression.
    Agents and Actions 02/2013; 62(4). DOI:10.1007/s00011-013-0591-6 · 2.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer progression involves carcinogenesis, an increase in tumour size, and metastasis. Here, we investigated the effect of overexpressed CXC chemokine ligand 14 (CXCL14) on these processes by using CXCL14/BRAK (CXCL14) transgenic (Tg) mice. The rate of AOM/DSS-induced colorectal carcinogenesis in these mice was significantly lower compared with that for isogenic wild type C57BL/6 (Wt) mice. When tumour cells were injected into these mice, the size of the tumours that developed and the number of metastatic nodules in the lungs of the animals were always significantly lower in the Tg mice than in the Wt ones. Injection of anti-asialo-GM1 antibodies to the mice before and after injection of tumour cells attenuated the suppressing effects of CXCL14 on the tumor growth and metastasis, suggesting that NK cell activity played an important role during CXCL14-mediated suppression of tumour growth and metastasis. The importance of NK cells on the metastasis was also supported when CXCL14 was expressed in B16 melanoma cells. Further, the survival rates after tumour cell injection were significantly increased for the Tg mice. As these Tg mice showed no obvious abnormality, we propose that CXCL14 to be a promising molecular target for cancer suppression/prevention. S ide effects are the most serious obstacles in the case of cancer therapeutics 1–4. Thus, prevention of cancer remains the most promising strategy for reducing its incidence and associated mortality due to this disease 5,6. Tumour progression has been shown to be largely dependent on the expression of tumour-promoting and tumour-suppressing genes, with the balance being in favour of the former at each step 7. The protein products of these oncogenes and tumour suppressor genes function as regulatory intracellular signalling molecules during this process. Recently, it was revealed that the cancer microenvironment also influences carcinogenesis and cancer progression 8,9
    Scientific Reports 03/2015; 5:09083. DOI:10.1038/srep09083 · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract CXCL12 and CXCL14 are evolutionarily conserved members of the CXC-type chemokine family. CXCL12 binds specifically to the G-protein-coupled receptor CXCR4 to induce the migration of primordial germ cells, hematopoietic stem cells, and inflammation-associated immune cells. In addition, CXCL12-CXCR4 signaling is often enhanced in malignant tumor cells and facilitates increased proliferation as well as metastasis. Although macrophage migration inhibitory factor and extracellular ubiquitin interact with CXCR4 as agonistic factors, CXCL12 was believed to be the sole chemokine ligand for CXCR4. However, a very recent report revealed that CXCL14 binds to CXCR4 with high affinity and efficiently inhibits CXCL12-mediated chemotaxis of hematopoietic progenitor and leukemia-derived cells. CXCL14 does not directly cross-compete with CXCL12 for the CXCR4 binding but instead inactivates CXCR4 via receptor internalization. Because both CXCL12 and CXCL14 are expressed during embryogenesis and brain development in mice, these two chemokines could function in an interactive fashion. We propose that the CXCL14 gene has been conserved from fish to man due to its role in fine-tuning the strength of CXCL12-mediated signal transduction. In addition to its biological implications, the above finding will be important for designing anti-cancer compounds targeting the CXCL12-CXCR4 signaling axis. In fact, a stabilized dimeric peptide containing the C-terminal 51-77 amino acid residues of CXCL14 has been shown to have stronger CXCL12 antagonistic activity than full-length CXCL14.
    Biomolecular concepts 05/2014; 5(2):167-73. DOI:10.1515/bmc-2014-0007

Full-text (2 Sources)

Download
2 Downloads
Available from
Mar 17, 2015