Article

Overexpression of CXC chemokine ligand 14 exacerbates collagen-induced arthritis.

Department of Immunology, Baylor College of Medicine, Houston, TX 77030, USA.
The Journal of Immunology (Impact Factor: 5.36). 03/2010; 184(8):4455-9. DOI: 10.4049/jimmunol.0900525
Source: PubMed

ABSTRACT CXCL14 is a relatively new chemokine with unidentified receptor and undefined function. Recently, we found that CXCL14 is upregulated in arthritic joints in a mouse model of autoimmune arthritis, collagen-induced arthritis. To examine the role of CXCL14 in the development and pathogenesis of autoimmune arthritis, we have generated transgenic (Tg) mice that overexpress CXCL14 under control of phosphoglycerate kinase promoter. The results showed that CXCL14-Tg mice developed more severe arthritis compared with wild-type controls. The draining lymph nodes of CXCL14-Tg mice were significantly enlarged and contained an increased number of activated T cells, particularly the CD44(+)CD62L(low) effector memory cells. In addition, T cells from CXCL14-Tg mice exhibited an enhanced proliferative response against collagen II and produced higher levels of IFN-gamma but not IL-4 or IL-17. CXCL14-Tg mice also had elevated levels of IgG2a autoantibodies. These findings indicated that CXCL14 plays an important role in the autoimmune arthritis, which may have an implication in understanding the pathogenic mechanisms of rheumatoid arthritis in humans and, ultimately, therapeutic interference.

Full-text

Available from: Shuhua Han, Mar 17, 2015
0 Followers
 · 
149 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer progression involves carcinogenesis, an increase in tumour size, and metastasis. Here, we investigated the effect of overexpressed CXC chemokine ligand 14 (CXCL14) on these processes by using CXCL14/BRAK (CXCL14) transgenic (Tg) mice. The rate of AOM/DSS-induced colorectal carcinogenesis in these mice was significantly lower compared with that for isogenic wild type C57BL/6 (Wt) mice. When tumour cells were injected into these mice, the size of the tumours that developed and the number of metastatic nodules in the lungs of the animals were always significantly lower in the Tg mice than in the Wt ones. Injection of anti-asialo-GM1 antibodies to the mice before and after injection of tumour cells attenuated the suppressing effects of CXCL14 on the tumor growth and metastasis, suggesting that NK cell activity played an important role during CXCL14-mediated suppression of tumour growth and metastasis. The importance of NK cells on the metastasis was also supported when CXCL14 was expressed in B16 melanoma cells. Further, the survival rates after tumour cell injection were significantly increased for the Tg mice. As these Tg mice showed no obvious abnormality, we propose that CXCL14 to be a promising molecular target for cancer suppression/prevention. S ide effects are the most serious obstacles in the case of cancer therapeutics 1–4. Thus, prevention of cancer remains the most promising strategy for reducing its incidence and associated mortality due to this disease 5,6. Tumour progression has been shown to be largely dependent on the expression of tumour-promoting and tumour-suppressing genes, with the balance being in favour of the former at each step 7. The protein products of these oncogenes and tumour suppressor genes function as regulatory intracellular signalling molecules during this process. Recently, it was revealed that the cancer microenvironment also influences carcinogenesis and cancer progression 8,9
    Scientific Reports 03/2015; 5:09083. DOI:10.1038/srep09083 · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The traffic of the different types of immune cells is an important aspect in the immune response. Chemokines are soluble peptides that are able to attract cells by interaction with chemokine receptors on their target cells. Several different chemokines and receptors exist enabling the specific trafficking of different immune cells. In chronic inflammatory disorders there is abundance of immune cells present at the inflammatory site. This review focuses on the role of chemokine receptors in chronic inflammatory disorders of the lungs, intestine, joints, skin and nervous system and the potential of targeting these receptors as therapeutic intervention in these disorders.
    Pharmacology [?] Therapeutics 08/2011; 133(1):1-18. DOI:10.1016/j.pharmthera.2011.06.008 · 7.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypoxia stimulates synovial hypoperfusion in rheumatoid arthritis (RA). TXNDC5 stimulates cellular proliferation in hypoxic conditions. We previously detected increased TXNDC5 expression in synovial tissues and blood from RA patients and demonstrated that the gene encoding TXNDC5 increased RA risk. The present study investigated the pathogenic roles of TXNDC5 in RA. Transgenic mice that over-expressed TXNDC5 (TXNDC5-Tg) were generated using C57BL/6J mice and treated with bovine collagen II to induce arthritis (CIA). Synovial fibroblasts from RA patients (RASFs) were cultured and incubated with TXNDC5-siRNA or CoCl(2), a chemical that induces hypoxia. CIA was observed in 80% of the TXNDC5-Tg, but only 20% of the wild-type mice (WT) developed CIA. The clinical arthritis scores reached 5 in the TXNDC5-Tg, but this index only reached 2 in the control mice. CIA TXNDC5-Tg exhibited clear pannus proliferation and bone erosion in joint tissues. A significant increase in CD4 T cells was observed in the thymus and spleen of TXNDC5-Tg during CIA. Serum levels of anti-collagen II IgG, IgG1 and IgG2a antibodies were significantly elevated in the mice. Increased cell proliferation, cell migration and TXNDC5 expression were observed in RASFs following incubation with 1 µM CoCl(2). However, this effect was diminished when TXNDC5 expression was inhibited with 100 nM siRNA. TNF-alpha, IL-1α, IL-1β and IL-17 levels were significantly increased in the blood of TXNDC5-Tg mice, but the levels of these cytokines declined in the supernatant of RASFs that were treated with TXNDC5 siRNA. The expression of adiponectin, a cytokine-like mediator, decreased significantly in RASFs following TXNDC5 siRNA treatment. These results suggest that TXNDC5-over-expressing mice were susceptible to CIA. This study also suggests that hypoxia induced TXCNDC5 expression, which contributed to adiponectin expression, cytokine production and the cellular proliferation and migration of fibroblasts in RA.
    PLoS ONE 01/2013; 8(1):e53301. DOI:10.1371/journal.pone.0053301 · 3.53 Impact Factor