Antibody against interleukin-6 receptor attenuates left ventricular remodelling after myocardial infarction in mice.

Division of Pathological Science, Department of Clinical Pharmacology, Kyoto Pharmaceutical University, 5 Misasagi Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan.
Cardiovascular research (Impact Factor: 5.81). 03/2010; 87(3):424-30. DOI: 10.1093/cvr/cvq078
Source: PubMed

ABSTRACT The plasma level of interleukin-6 (IL-6) has been reported to be associated with left ventricular (LV) remodelling after myocardial infarction (MI). The present study was designed to examine whether anti-IL-6 receptor antibody (MR16-1) prevents the development of LV remodelling after MI.
Balb/c male mice were subjected to MI by ligating the left anterior descending coronary artery. The mice were then treated with an intraperitoneal injection of MR16-1 (500 microg/body) or control IgG. MR16-1 decreased the myocardial myeloperoxidase activity and monocyte chemoattractant protein-1 concentration in the infarct region, concomitant with decreases in neutrophil and macrophage infiltration 3 days after ligation, while infarct size was comparable between the control IgG- and MR16-1-treated mice. At 7 days after ligation, MR16-1 significantly suppressed matrix metalloproteinase-2 activity in the infarct region. Furthermore, the MR16-1-treated mice demonstrated a reduction in LV dilatation and an improvement in LV contractile function compared with the control IgG-treated mice at 7 and 28 days after surgery, leading to an improvement in survival rate (80.6 vs. 59.5%, P < 0.05) at 28 days after surgery. The beneficial effects of MR16-1 were accompanied by histological suppression of cardiomyocyte hypertrophy and interstitial fibrosis in the non-infarct region.
Administration of MR16-1 after MI suppressed myocardial inflammation, resulting in the amelioration of LV remodelling. Neutralization of the IL-6 receptor is a potentially useful strategy for protecting hearts from LV remodelling after MI.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that MyD88 KO mice appear protected from ischemic muscle injury while TRIF KO mice exhibit sustained necrosis after femoral artery ligation (FAL). However, our previous data did not differentiate whether the protective effect of absent MyD88 signaling was secondary to attenuated injury after FAL or quicker recovery from the insult. The purpose of this study was to delineate these different possibilities. On the basis of previous findings, we hypothesized that MyD88 signaling promotes enhanced inflammation while TRIF mediates regeneration after skeletal muscle ischemia. Our results show that after FAL, both MyD88 KO mice and TRIF KO mice have evidence of ischemia, as do their control counterparts. However, MyD88 KO mice had lower levels of serum IL-6 24 h after FAL, while TRIF KO mice demonstrated sustained serum IL-6 up to 1 week after injury. Additionally, MyD88 KO mice had higher nuclear content and larger myofibers than control animals 1 week after injury. IL-6 is known to have differential effects in myoblast function, and can inhibit proliferation and differentiation. In tibialis anterior muscle harvested from injured animals, IL-6 levels were higher and the proliferative marker MyoD was lower in TRIF KO mice by PCR. Furthermore, expression of MyD88 appeared to be higher in skeletal muscle of TRIF KO mice. In vitro, we showed that myoblast differentiation and proliferation were attenuated in response to IL-6 treatment giving credence to the finding that low IL-6 in MyD88 KO mice may be responsible for larger myocyte sizes 1 week after FAL. We conclude that MyD88 and TRIF work in concert to mediate a balanced response to ischemic injury.
    Physiological Reports. 05/2014; 2(5).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Myocardial infarction triggers an intense inflammatory response that is essential for cardiac repair, but which is also implicated in the pathogenesis of postinfarction remodelling and heart failure. Signals in the infarcted myocardium activate toll-like receptor signalling, while complement activation and generation of reactive oxygen species induce cytokine and chemokine upregulation. Leukocytes recruited to the infarcted area, remove dead cells and matrix debris by phagocytosis, while preparing the area for scar formation. Timely repression of the inflammatory response is critical for effective healing, and is followed by activation of myofibroblasts that secrete matrix proteins in the infarcted area. Members of the transforming growth factor β family are critically involved in suppression of inflammation and activation of a profibrotic programme. Translation of these concepts to the clinic requires an understanding of the pathophysiological complexity and heterogeneity of postinfarction remodelling in patients with myocardial infarction. Individuals with an overactive and prolonged postinfarction inflammatory response might exhibit left ventricular dilatation and systolic dysfunction and might benefit from targeted anti-IL-1 or anti-chemokine therapies, whereas patients with an exaggerated fibrogenic reaction can develop heart failure with preserved ejection fraction and might require inhibition of the Smad3 (mothers against decapentaplegic homolog 3) cascade. Biomarker-based approaches are needed to identify patients with distinct pathophysiologic responses and to rationally implement inflammation-modulating strategies.
    Nature Reviews Cardiology 03/2014; · 10.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Myocardial remodeling following myocardial infarction (MI) is emerging as key causes of chronic infarct mortality. Interleukin-6 is a classic pro-inflammatory cytokine needed to mount an effective immune response. It seems that interleukin-6 acts as an important role in the dynamic and superbly orchestrated process of innate immunity after MI. Interleukin-6 timely suppresses of innate immune signals to prevent the catastrophic consequences of uncontrolled inflammation on cardiac geometry and function, and thus tunes myocardial remodeling. A comprehensive understanding of biological processes of interleukin-6 in innate immunity leading to inflammatory response and disease-related ventricular remodeling is helpful to find the solution of chronic heart failure. To accomplish this, we reviewed the articles of interleukin-6 regard to inflammation, innate immunity, and cardiac remodeling. This review focuses on the role of interleukin-6 that dominates cell-mediated immunity, especially on neutrophils, monocytes, macrophages, and fibroblasts. In addition, we will also briefly discuss other inflammatory cytokines involved in this process within the paper.
    Heart Failure Reviews 04/2014; · 4.45 Impact Factor