Article

Increased sensorimotor network activity in DYT1 dystonia: a functional imaging study.

Centre for Neurosciences, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York 11030, USA.
Brain (Impact Factor: 9.92). 03/2010; 133(Pt 3):690-700. DOI: 10.1093/brain/awq017
Source: PubMed

ABSTRACT Neurophysiological studies have provided evidence of primary motor cortex hyperexcitability in primary dystonia, but several functional imaging studies suggest otherwise. To address this issue, we measured sensorimotor activation at both the regional and network levels in carriers of the DYT1 dystonia mutation and in control subjects. We used (15)Oxygen-labelled water and positron emission tomography to scan nine manifesting DYT1 carriers, 10 non-manifesting DYT1 carriers and 12 age-matched controls while they performed a kinematically controlled motor task; they were also scanned in a non-motor audio-visual control condition. Within- and between-group contrasts were analysed with statistical parametric mapping. For network analysis, we first identified a normal motor-related activation pattern in a set of 39 motor and audio-visual scans acquired in an independent cohort of 18 healthy volunteer subjects. The expression of this pattern was prospectively quantified in the motor and control scans acquired in each of the gene carriers and controls. Network values for the three groups were compared with ANOVA and post hoc contrasts. Voxel-wise comparison of DYT1 carriers and controls revealed abnormally increased motor activation responses in the former group (P < 0.05, corrected; statistical parametric mapping), localized to the sensorimotor cortex, dorsal premotor cortex, supplementary motor area and the inferior parietal cortex. Network analysis of the normative derivation cohort revealed a significant normal motor-related activation pattern topography (P < 0.0001) characterized by covarying neural activity in the sensorimotor cortex, dorsal premotor cortex, supplementary motor area and cerebellum. In the study cohort, normal motor-related activation pattern expression measured during movement was abnormally elevated in the manifesting gene carriers (P < 0.001) but not in their non-manifesting counterparts. In contrast, in the non-motor control condition, abnormal increases in network activity were present in both groups of gene carriers (P < 0.001). In this condition, normal motor-related activation pattern expression in non-manifesting carriers was greater than in controls, but lower than in affected carriers. In the latter group, measures of normal motor-related activation pattern expression in the audio-visual condition correlated with independent dystonia clinical ratings (r = 0.70, P = 0.04). These findings confirm that overexcitability of the sensorimotor system is a robust feature of dystonia. The presence of elevated normal motor-related activation pattern expression in the non-motor condition suggests that abnormal integration of audio-visual input with sensorimotor network activity is an important trait feature of this disorder. Lastly, quantification of normal motor-related activation pattern expression in individual cases may have utility as an objective descriptor of therapeutic response in trials of new treatments for dystonia and related disorders.

0 Bookmarks
 · 
69 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The dystonias are a group of disorders characterized by involuntary twisting and repetitive movements. DYT1 dystonia is an inherited form of dystonia caused by a mutation in the TOR1A gene, which encodes torsinA. TorsinA is expressed in many regions of the nervous system, and the regions responsible for causing dystonic movements remain uncertain. Most prior studies have focused on the basal ganglia, although there is emerging evidence for abnormalities in the cerebellum too. In the current studies, we examined the cerebellum for structural abnormalities in a knock-in mouse model of DYT1 dystonia. The gross appearance of the cerebellum appeared normal in the mutant mice, but stereological measures revealed the cerebellum to be 5% larger in mutant compared to control mice. There were no changes in the numbers of Purkinje cells, granule cells, or neurons of the deep cerebellar nuclei. However, Golgi histochemical studies revealed Purkinje cells to have thinner dendrites, and fewer and less complex dendritic spines. There also was a higher frequency of heterotopic Purkinje cells displaced into the molecular layer. These results reveal subtle structural abnormalities of the cerebellum that are similar to those reported for the basal ganglia in the DYT1 knock-in mouse model.
    Neurobiology of Disease 10/2013; · 5.62 Impact Factor
  • Article: Dystonia.
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this review is to provide an update on the classification, phenomenology, pathophysiology, and treatment of dystonia. A revised definition based on the main phenomenologic features of dystonia has recently been developed in an expert consensus approach. Classification is based on two main axes: clinical features and etiology. Currently, genes have been reported for 14 types of monogenic isolated and combined dystonia. Isolated dystonia (with dystonic tremor) can be caused by mutations in TOR1A (DYT1), TUBB4 (DYT4), THAP1 (DYT6), PRKRA (DYT16), CIZ1 (DYT23), ANO3 (DYT24), and GNAL (DYT25). Combined dystonias (with parkinsonism or myoclonus) are further subdivided into persistent (GCHI [DYT5], SGCE [DYT11], and ATP1A3 [DYT12], with TAF1 most likely but not yet proven to be linked to DYT3) and paroxysmal (PNKD [DYT8], PRRT2 [DYT10], and SLC2A1 [DYT18]). Recent insights from neurophysiologic studies identified functional abnormalities in two networks in dystonia: the basal ganglia-sensorimotor network and, more recently, the cerebellothalamocortical pathway. Besides the well-known lack of inhibition at different CNS levels, dystonia is specifically characterized by maladaptive plasticity in the sensorimotor cortex and loss of cortical surround inhibition. The exact role (modulatory or compensatory) of the cerebellar-cortical pathways still has to be further elucidated. In addition to botulinum toxin for focal forms, deep brain stimulation of the globus pallidus internus is increasingly recognized as an effective treatment for generalized and segmental dystonia. The revised classification and identification of new genes for different forms of dystonia, including adult-onset segmental dystonia, enable an improved diagnostic approach. Recent pathophysiologic insights have fundamentally contributed to a better understanding of the disease mechanisms and impact on treatment, such as functional neurosurgery and nonpharmacologic treatment options.
    Continuum (Minneapolis, Minn.). 10/2013; 19(5, Movement Disorders):1225-1241.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multivariate analytical routines have become increasingly popular in the study of cerebral function in health and in disease states. Spatial covariance analysis of functional neuroimaging data has been used to identify and validate characteristic topographies associated with specific brain disorders. Voxel-wise correlations can be used to assess similarities and differences that exist between covariance topographies. While the magnitude of the resulting topographical correlations is critical, statistical significance can be difficult to determine in the setting of large data vectors (comprised of over 100,000 voxel weights) and substantial autocorrelation effects. Here, we propose a novel method to determine the p-value of such correlations using pseudo-random network simulations.
    PLoS ONE 01/2014; 9(1):e88119. · 3.73 Impact Factor

Full-text (2 Sources)

View
17 Downloads
Available from
Jun 3, 2014