Dielectronic recombination data for dynamic finite-density plasmas - XIII. The magnesium isoelectronic sequence

Department of Physics, University of Strathclyde, Glasgow, Scotland, United Kingdom
Astronomy and Astrophysics (Impact Factor: 4.48). 11/2007; 474(3). DOI: 10.1051/0004-6361:20078238

ABSTRACT We have calculated total and partial final- state level- resolved dielectronic recombination ( DR) rate coe. cients for the ground and metastable initial levels of 21 Mg- like ions between Al+ and Xe42+. This is the final part of the assembly of a levelresolved DR database necessary for modelling dynamic finite-density plasmas within the generalized collisional-radiative framework. Calculations have been performed in both LS-and intermediate coupling, allowing for. n = 0 and. n = 1 core- excitations from ground and metastable levels. Complementary partial and total radiative recombination RR coeficients have been calculated for the same ions viz. Al+ through Zn18+, as well as Kr24+, Mo30+, and Xe42+. Fitting coeficients which describe the total RR and DR rate coeficients (separately) are also presented here. Results for a selection of ions fromthis sequence are discussed, and compared with existing theoretical and experimental results. A full set of results can be accessed from the Atomic Data and Analysis Structure (ADAS) database or from the Oak Ridge Controlled Fusion Atomic Data Center ( The complexity of further M-shell sequences, both from the atomic and modelling perspectives, renders this juncture a natural conclusion for the assemblage of the partial database. Further M-shell work, has and will, focus more on total rate coe. cients, rather than partials, at least in the medium term.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rate coefficients for photorecombination (PR) and cross sections for electron-impact ionization (EII) of Fe$^{14+}$ forming Fe$^{13+}$ and Fe$^{15+}$, respectively, have been measured by employing the electron-ion merged-beams technique at a heavy-ion storage ring. Rate coefficients for PR and EII of Fe$^{14+}$ ions in a plasma are derived from the experimental measurements. Simple parametrizations of the experimentally derived plasma rate coefficients are provided for use in the modeling of photoionized and collisionally ionized plasmas. In the temperature ranges where Fe$^{14+}$ is expected to form in such plasmas the latest theoretical rate coefficients of Altun et al. [Astron. Astrophys. 474, 1051 (2007)] for PR and of Dere [Astron. Astrophys. 466, 771 (2007)] for EII agree with the experimental results to within the experimental uncertainties. Common features in the PR and EII resonance structures are identified and discussed.
    Physical Review A 06/2014; 90(1). DOI:10.1103/PhysRevA.90.012702 · 2.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several laboratory facilities were used to benchmark theoretical spectral models those extensively used by astronomical communities. However there are still many differences between astrophysical environments and laboratory miniatures that can be archived. Here we setup a spectral analysis system for astrophysical and laboratory (SASAL) plasmas to make a bridge between them, and investigate the effects from non-thermal electrons, contribution from metastable level-population on level populations and charge stage distribution for coronal-like, photoionized, and geocoronal plasmas. Test applications to laboratory measurement (i.e. EBIT plasma) and astrophysical observation (i.e. Comet, Cygnus X-3) are presented. Time evolution of charge stage and level population are also explored for collisional and photoionized plasmas.
    The Astrophysical Journal 01/2014; 783(2). DOI:10.1088/0004-637X/783/2/124 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: New data for the calculation of ionization and recombination rates have been published in the past few years, most of which are included in the CHIANTI database. We used these data to calculate collisional ionization and recombination rates for the non-Maxwellian κ-distributions with an enhanced number of particles in the high-energy tail, which have been detected in the solar transition region and the solar wind. Ionization equilibria for elements H to Zn are derived. The κ-distributions significantly influence both the ionization and recombination rates and widen the ion abundance peaks. In comparison with the Maxwellian distribution, the ion abundance peaks can also be shifted to lower or higher temperatures. The updated ionization equilibrium calculations result in large changes for several ions, notably Fe VIII-Fe XIV. The results are supplied in electronic form compatible with the CHIANTI database.
    The Astrophysical Journal Supplement Series 05/2013; 206(1):6. DOI:10.1088/0067-0049/206/1/6 · 14.14 Impact Factor